
for

HP3000s running MPE/iX

Reference Manual

6901 Old Keene Mill Rd, Suite 500
Springfield, VA 22150

(703) 569-9189
Fax: (703) 451-3720

Sales@3k.com
E-Mail: Support@3k.com

ii

NOTICE

3k Associates, Inc. makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. 3k Associates, Inc. shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

COPYRIGHT 1997-1998, 3k Associates, Inc.

The information contained in this document is subject to change without notice.

NOTE: Common Messaging Call API, Version 1.0 (June 1, 1993) reprinted with permission
from X.400 API Association. All additions made by 3k Associates, Inc. appear with gray,
shaded text and a “ ” symbol.

PRINTING HISTORY

First Printing .. May, 1997

Second Printing .. April, 1998

iii

Table of Contents

Introduction ___ v

Installation Instructions ______________________________________ vi

Common Messaging Call API (Version 1.0)
1. Introduction ... 5

1.1. Purpose ... 5
1.2. Overview .. 5
1.3. Abbreviations.. 6
1.4. Referenced Documents... 6
1.5. Levels.. 7
1.6. C Naming Conventions... 8
1.7. Conformance .. 8

2. Functional Architecture ... 10
2.1. Model.. 10
2.2. Functional Overview .. 11
2.3. Session .. 11
2.4. Configuration.. 12
2.5. Extensions... 12

3. Data Structures .. 13
3.1. Basic Data Types .. 13
3.2. Attachment.. 14
3.3. Boolean... 15
3.4. Buffer.. 15
3.5. Counted String.. 15
3.6. Enumerated... 16
3.7. Extension .. 16
3.8. Flags.. 17
3.9. Message .. 18
3.10. Message Reference ... 20
3.11. Message Summary.. 21
3.12. Object Identifier.. 22
3.13. Recipient... 22
3.14. Return Code.. 24
3.15. Session ID... 24
3.16. String .. 24
3.17. Time.. 25
3.18. User Interface ID .. 26

iv

4. Functional Interface... 27
4.1. Sending Messages... 28

4.1.1. Send.. 28
4.1.2. Send Documents... 32

4.2. Receiving Messages.. 35
4.2.1. Act On .. 35
4.2.2. List.. 38
4.2.3. Read ... 41

4.3. Looking Up Names... 44
4.3.1. Look Up ... 44

4.4. Administration .. 48
4.4.1. Free... 48
4.4.2. Logoff... 50
4.4.3. Logon ... 52
4.4.4. Query Configuration... 55
4.4.5 COBOL Memory Cell Read... 59

4.5. Return Codes .. 61
4.6. C Declaration Summary ... 64

5. Programming Examples .. 72
6. Appendices .. 78

Appendix A Extension Registration ... 78
Appendix B Common Extension Set.. 80

C Declaration Summary.. 87
Other Extension Sets... 89

Appendix C Platform Specific Information including Runtime Bindings.. 90

Contact Information ___ 93

Source Code Examples _______________________________________ 94

v

Introduction
From the people that brought you the first SMTP/MIME e-mail system for the HP3000, an easy to

use standards based programmatic interface that allows you to mail-enable your HP3000-based
applications.

A.P.I./3000 is a library of procedure calls that make it easy for your application to send a message
(including file attachments), retrieve messages from a mailbox, and interrogate the mail directory to verify
e-mail addresses. And, since the API accesses our SMTP/MIME messaging engine, your messages are
automatically MIME compatible.

• Ideal as a transport for EDI or other transaction data

• Your applications can transmit data as e-mail messages to other systems or trading partners

• Store and forward SMTP-compatible message engine ensures delivery to any other SMTP
compatible system

• User-defined scripts can be attached to mailboxes to invoke your applications automatically upon
receipt of inbound mail messages - passing the message contents to your application for
processing

• Simple programmatic calls to send messages (with attachments allowed), retrieve messages from
a mailbox, and interrogate the mail system directory

• Example C, COBOL, and SPLash! programs provided

The CMC (Common Messaging Call) standard was designed by the XAPI group as a standardized
way of mail-enabling applications on a wide variety of platforms. Up to that point, shops with a variety of
platforms had to learn different proprietary interfaces to mail enable their applications and the same
application when ported to different platforms would require significant code changes to work with the
mail system on the new platform. With the CMC standard interface, programmers need only learn the
standard interface routines (as documented in the standard specifications) and could not only leverage this
knowledge across multiple platforms, but could now easily port their applications to new platforms without
having to re-code the mail interface. Now, with this interface, mail-enabled applications written on the
HP3000 platform can potentially be easily ported to other platforms, and mail-enabled applications written
to the CMC standard for other platforms can be ported to the HP3000.

We provide a copy of the CMC specification in this manual for your convenience (reprinted with
permission).

vi

Installation Instructions

From Tape

All 3k software products install automatically by simply restoring one job stream from
the installation tape, inserting appropriate passwords into it and streaming it. The
installation job automatically determines whether you are in stalling the software for the
first time or are updating to a new software release. The steps are:

Note: If this is an update (you already have an existing version) verify that there are no
users accessing files in the THREEK account. This account may include other 3k
products: NetMail/3000, Pop Server/3000, DeskLink, A.P.I./3000 (Application
Programming Interface), an HP3000 Client for Office Exent Fax, or Office Extend
FTP software. Once verified, mount a blank tape or DAT and :STORE @.@.THREEK
before you begin the new installation.

1. Log on as MANAGER.SYS

2. Issue a file equation for your tape drive: :FILE THREEK;DEV=TAPE (for magnetic
tape or DAT users) (or) :FILE THREEK;DEV=CTAPE (for cartridge tape systems)

3. RESTORE *THREEK;THREEKLD.PUB.SYS;SHOW (You should see one file
restored.)

4. Use your favorite text editor and modify the first line of the file
(THREEKLD.PUB.SYS) to include the appropriate passwords, -OR- simply remove
the passwords from MANAGER.SYS,PUB for the duration of the installation
process and replace them when done. If you have a third party security system
installed, make sure you have enabled logon access for MGR.THREEK and
MANAGER.SYS.

5. STREAM THREEKLD.PUB.SYS (You will see informative messages on the
console reporting the progress of the software installation or update.)

When the job(s) have completed, you will see a message reporting that the software was
successfully installed. If this is a DEMO version you downloaded over the Internet, you

now need to ACTIVATE your software (see Step 7). Demos received on tape
or DAT are already activated and ready to run at this
point.

To activate a demo:
call the 3k Associates sales office at:

(US/Canada) 1-800 NetMail (800 638-6245)
(Other countries) +1 703 569-9189

Personnel are available 9AM-8PM Eastern (US) time.

vii

CMC Standard Specifications

Following this page is the actual XAPI group’s CMC (Common Messaging Call) standard
application programming interface. This interface was designed to be portable to as many systems as
possible, yet is designed to accommodate individual system extensions. The standard is similar to the
windows-based “MAPI” standard, with the obvious exception that it is not dependent on windows-style
frames and boxes.

Special implementation notes and extensions applicable to the HP3000 based implementation are
noted with 3k logo marks and are shaded.

X.400 API Association Specification

COMMON MESSAGING CALL API

Version 1.0

June 1, 1993

X.400 API Association

Page: 4 Common Messaging Call API

Copyright (c) 1992, 1993, X.400 API Association

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the X.400 API Association.

Any comments relating to the material contained in this document may be submitted to XAPIA at:

X.400 API Association
2141 Landings Drive
Mountain View, CA 74043

Contributing Editors:

John Ankorn, CTC
Kurt Christofferson and Pat Reilly, RAM Mobile Data
Rodolphe Goldstein, First Telecom
Stephen J. Griesmer, AT&T
Keith Grochow and Jonathan Kauffman, Microsoft
Chris Harding, Datalogic
Ken Krechmer, Action Consulting
Brian Lambert, Iris Associates
Sue Klein Lebeck, Tandem Computers, Inc.
Joseph M. Mansur, Digital Equipment Corporation
Pauline Moller, OSIWare
Pierre Perret and Daniella Sirocchi, Bull
Elena Seifrid, Retix
Enzo Signore, ISOCOR
Jack Skinner, IBM
Mike Timms, Novell
Mike Weston and Tom Brant, cc:Mail/Lotus

Common Messaging Call API Page: 5

1. Introduction

This chapter introduces the Common Messaging Call Application Program Interface and its specifications.
It indicates the purpose of the interface, provides an overview of it, details abbreviations, provides
document references, explains the level of abstraction of the interface, defines C naming conventions, and
specifies conformance requirements.

1.1. Purpose

The purpose of this document is to specify a high-level messaging application program interface (API) that
can be supported by most messaging services deployed today. The API is intended to enable application
programmers to easily integrate messaging, and thus communications, into their applications, creating a
large body of mail-enabled applications.

This document is directed toward messaging service developers who might wish to support such an
application program interface. This document may also guide application developers in understanding
implementation-independent features of the Common Messaging Call API. The application developers
must follow manuals provided by the system they are using for messaging support.

1.2. Overview

The Common Messaging Call Application Program Interface (CMC API) provides a set of high-level
functions for mail-enabled applications to send and receive electronic messages.

This interface is designed to be independent of the actual messaging protocol employed between sender
and recipient. The interface will support the creation and reception of standard message formats such as
X.400 and SMTP (RFC822) as well as proprietary message formats. This is achieved through generic
definition of capabilities common to most messaging protocols, plus a mechanism for defining extensions,
which can be used to invoke protocol-specific services.

The interface is also designed to be independent of the operating system and underlying hardware used by
the messaging service.

Another important consideration in the design of this API is to minimize the number of function calls
needed to send or receive a message. For example a mail-enabled application can send a message with a
single function call and receive a specific message with two calls.

The CMC API is designed to be complementary to existing XAPIA-X/OPEN API's such as the XMHS and
XMS API.

The CMC interface is designed to allow a common interface over virtually any electronic messaging
service. For each CMC implementation, the view/capabilities presented by CMC must be mapped to
the view/capabilities of the underlying messaging service.

To maximize interoperability between CMC applications which use similar underlying messaging services,
it is critical that a common mapping be defined by the industry segment representing the relevant
messaging protocol or interface.

To that end:

Page: 6 Common Messaging Call API

The XAPIA will define the common mapping between CMC and the X.400 protocol, from the
perspective of other XAPIA-defined X.400 APIs.

Standards bodies, vendors, or vendor groups representing a specific messaging protocol or interface
are encouraged to define a common mapping between CMC and the relevant messaging protocol
or interface.

To maximize interoperability between CMC applications which use differing underlying messaging
services, it is critical that mapping definitions be designed with such interoperability in mind.

To that end, the following guidelines are offered. This list is not comprehensive:
Map message text strings to international character sets, wherever appropriate or possible
Map message attachment types to commonly recognized attachment types, wherever appropriate or

possible

1.3. Abbreviations

The following abbreviations are used in this document.

API Application Program Interface

CMC Common Messaging Call

XAPIA X.400 Application Program Interface Association

XMHS API X/OPEN Application Program Interface to Electronic Mail (X.400)

XMS API X/OPEN Message Store Application Program Interface

XOM API X/OPEN OSI-Abstract-Data Manipulation API

UI User Interface

T.611 CCITT API for use with facsimile, telex, and teletex services

1.4. Referenced Documents

This section identifies other documents on which this document relies.

ANSI C American National Standard for Information Systems - Programming Language C,
X3.159-1989.

XMHS API API to Electronic Mail (X.400), CAE Specification, X/Open Company Limited and
X.400 API Association, 1991.

XMS API Message Store API, Preliminary Specification, X/Open Company Limited and X.400
API Association, 1991.

Common Messaging Call API Page: 7

XOM API OSI-Abstract-Data Manipulation API, CAE Specification, X/Open Company Limited
and X.400 API Association, 1991.

X.208 CCITT Recommendation X.208, "Specification of Abstract Syntax Notation One
(ASN.1), 1992.

1.5. Levels

This document defines the CMC API at two levels of abstraction. It defines a "generic" interface
independent of any particular programming language, and a C language interface based on the American
National Standard for the C Programming Language. The "generic" interface is included to guide the
development of other language-specific specifications, e.g. PASCAL.

For readability, the specifications of the generic and C interfaces are combined. In Section 3, the CMC
data structures are described generically, but include a C declaration. In Section 4, the CMC functions are
specified generically, but include a synopsis written in C. For clarity, constants and error codes throughout
this specification are written in the C syntax described below. Section 4.6 gives a summary of the C
declarations and constants used throughout the specification.

Page: 8 Common Messaging Call API

1.6. C Naming Conventions

How an identifier for an element of the C interface is derived from the name of the corresponding element
of the generic interface depends on the element's type, as specified in Table 1-1 below. The generic name
is prefixed with the character string in the second column of the table, alphabetic characters are converted
to the case in the third column.

Element Type Prefix Case
Data type CMC_ Lower
Data value CMC_ Upper
Function cmc_ Lower
Function argument none Lower
Function result none Lower
Constant CMC_ Upper
Error cmc_e_ Upper
Macro CMC_ Upper
Reserved for extension sets CMC_XS_ any
Reserved for extensions CMC_X_ any
Reserved for use by implementors CMCP any

Table 1-1: Derivation of C Naming Conventions

Elements with the prefix "CMCP" (any case) are reserved for internal proprietary use by implementors of
the CMC service. They are not intended for direct use by programs written using the CMC interface.

The prefixes "CMC_XS_" and "CMC_X_" (in either upper or lower case) are reserved for extensions of
the interface by vendors or groups.

For constant data values, there is usually an additional string appended to "CMC_" to indicate the data
structure or function to which the constant data value pertains.

1.7. Conformance

In order for an implementation of the Common Messaging Calls API to conform to this specification it
must meet the following criteria:

• All functions and data structures must be implemented as defined. Statements elsewhere in the
specification which describe features as optional or with exceptions take precedence over this
criterion.

• The implementation must be able to send and receive at least the CMC IPM message type.

• Character set support is up to the underlying implementation. Support for an implementation-defined
default character set is required. Optionally, other character sets may be supported. Counted string
support is not required.

Common Messaging Call API Page: 9

• All extensions are optional. Vendors are encouraged to support the CMC-defined standard extension
set specified in this document. It is further encouraged that standard extension sets are developed for
any proprietary or non-proprietary messaging services for which a CMC interface is provided, to
accommodate features specific to that messaging service, and that the extension set be registered with
the XAPIA.

• Minimum conformance for an extension set will be defined by the creator of the extension set.

Page: 10 Common Messaging Call API

2. Functional Architecture

This chapter describes the functional architecture of services supporting the CMC API. It provides a model
and a functional overview along with a discussion of sessions, configuration, and extensions.

2.1. Model

The CMC interface is defined between a mail-enabled application and a messaging service. The messaging
service in turn may support multiple messaging protocol services, each using different messaging formats
and protocols, e.g. X.400, RFC 822 and SMTP. All functions in this interface are designed to be
independent of the messaging protocol services. However, the API does allow protocol-specific functions
to be invoked through the use of extensions (see Section 2.5, Extensions). The CMC interface is depicted
in Figure 2-1 below.

The model of the CMC interface can be divided into three components: a directory, a submission queue,
and a receiving mailbox. These components are shown in Figure 2-2.

Mail Enabled Application

Common
Messaging Calls

Messaging Service

Figure 2-1: Positioning of the Common Messaging Call API.

Mail Enabled Application

⇑ ⇓ ⇑ Common
⇑ ⇓ ⇑ Messaging Calls

Directory Submission
Queue

Mailbox Messaging
Service

Figure 2-2: Model of the Common Messaging Call API.

Common Messaging Call API Page: 11

There is a submission queue for each mail-enabled application. The CMC model provides for synchronous
submission of mail. Once the application has completed a send call, all responsibility for the message is
transferred to the CMC implementation.

On the receiving side, all messages are delivered to a mailbox for a user. Mailboxes are maintained on
behalf of messaging users and are accessible by users of mail-enabled applications with the proper
permissions. With the CMC API, the application can retrieve selective summaries of the contents of a
mailbox along with identifiers for the particular messages. These identifiers can then be used to select and
read individual messages.

The directory allows the mail enabled application to look up information about users of the messaging
service. The directory will allow resolution of user names to addresses. Some services may also provide a
user interface to create recipient lists for messages or to find out details about a specific recipient.

2.2. Functional Overview

The CMC interface supports three principle tasks: sending messages, reading messages, and looking up
addressing information.

To send a message, the mail-enabled application must first establish a session with the messaging service
through the CMC Logon() function or interactively by setting the LOGON_UI_ALLOWED flag in the
CMC Send() function. An application submits a message to the submission queue through a CMC Send()
function. The mail-enabled application is responsible for populating the CMC message structure used in
the CMC Send() function. The mail-enabled application may also use a more limited CMC Send
Documents() function to send a message. This function is primarily intended for calling from a macro
language. The closure of a session is accomplished through the CMC Logoff() function.

To retrieve a message, the mail-enabled application establishes a session through the CMC Logon()
function. The application can then retrieve a summary of mailbox information through the CMC List()
function. Individual messages can be retrieved through the CMC Read() function. CMC Act On() allows
the user to act on a message in the mailbox (e.g. delete it). Memory allocated by the system for structures
is released by passing the returned pointer to the CMC Free() function. The closure of a session is
accomplished through the CMC Logoff() function.

To look up names in the directory, the mail-enabled application establishes a session through the CMC
Logon() function or interactively by setting the LOGON_UI_ALLOWED flag in the CMC Look Up()
function. The application then uses CMC Look Up() to translate a user-friendly name into a messaging
address. This function also allows the application to request UI to create addressing lists or recipient
specific details. Memory allocated by the system for structures is released by passing the returned pointer
to the CMC Free() function. The closure of a session is accomplished through the CMC Logoff() function.

2.3. Session

CMC function calls occur within the context of a session. A session is established with a CMC Logon()
call and terminated with a CMC Logoff() call. The CMC Logon() call also authenticates the user to the
messaging service and sets session attributes. Session attributes include character set and version number.
Currently, there is no support for sharing sessions among applications.

Page: 12 Common Messaging Call API

2.4. Configuration

The persistent configuration of the service is available for query by the mail-enabled application. The
application may query the service to determine its support for different version(s) of the CMC API,
extensions, and environmental parameters that comprise the configuration. No function is defined in this
API for the modification of this configuration information. The form in which this information is stored
(e.g. file format) is left undefined by this specification.

2.5. Extensions

The major data structures and functions defined in this specification can be extended methodically through
the use of extensions. Extensions are used to add additional fields to data structures and additional
parameters to a function call. A standard generic data structure has been defined for these extensions. It
consists of an item code, identifying the extension; an item data, holding the length of extension data or the
data itself; an item reference, pointing to where the extension value is stored or NULL if there is no related
item storage; and flags for the extension.

Extensions that are additional parameters to a function call may be input or output. That is, the extension
may be passed as input parameters from the application to the CMC service or passed as output parameters
from CMC service to the application. If an extension is an input parameter, the application allocates
memory for the extension structure and any other structures associated with the extension. If an extension
is an output parameter, the CMC service allocates the storage for the extension result, if necessary. In this
case, the application must free the allocated storage with a CMC Free() call.

Extensions play a dual role in this specification. First, they provide a mechanism whereby features not
common across all messaging services can be accommodated. Second, they provide a mechanism to
extend the specification in the future, minimizing any backward-compatibility issues.

Use of extensions for the first reason, while very important, should be employed with caution. Reliance on
features specific to particular messaging-services limits application portability across messaging services;
also, such features may not survive a journey through multiple gateways in a mixed messaging network.

To minimize portability issues, implementors are encouraged to specify extensions as generically as
possible, and to contribute these extensions as proposed additions to the CMC-defined extension set.
Through this process, the CMC API set will evolve in a positive direction in a manner which continues to
maximize portability.

For more information on extension registration and the extensions defined in this document, see the
appendices.

Common Messaging Call API Page: 13

3. Data Structures

This section defines, and Table 3-1 lists, the data structures used in the CMC API.

Data Type Name Description
Attachment Message attachment structure
Boolean A value that indicates logical true or false
Buffer Pointer to a data item
Counted String String with an explicit length designation
Enumerated Data type containing a value from an enumeration
Extension Extension structure
Flags Container for flag bits
Message Message structure
Message Reference Message Reference structure
Message Summary Message summary structure
Object Identifier Object Identifier structure
Recipient Originator/recipient structure
Return Code Return value indicating either that a function succeeded or why it failed
Session ID Unique identifier for session
String Character string pointer
Time Time structure
User Interface ID User interface handle

Table 3-1: CMC Data Structures

3.1. Basic Data Types

Some data types are defined in terms of the following 'intermediate data types,' whose precise definitions in
C are system-defined:

sint16 The positive and negative integers representable in 16 bits.
sint32 The positive and negative integers representable in 32 bits.
uint8 The non-negative integers representable in 8 bits.
uint16 The non-negative integers representable in 16 bits.
uint32 The non-negative integers representable in 32 bits.

C DECLARATION

typedef system-defined, e.g., byte CMC_sint8;
typedef system-defined, e.g., int CMC_sint16;
typedef system-defined, e.g., long int CMC_sint32;
typedef system-defined, e.g., unsigned int CMC_uint16;
typedef system-defined, e.g., unsigned long int CMC_uint32;

Page: 14 Common Messaging Call API

3.2. Attachment

NAME

Attachment - type definition for a CMC message attachment structure.

C DECLARATION

typedef struct {
CMC_string attach_title;
CMC_object_identifier attach_type;
CMC_string attach_filename;
CMC_flags attach_flags;
CMC_extension *attach_extensions;

} CMC_attachment;

DESCRIPTION

A data value of this type is an attachment. An attachment has the following components:

1. attach_title. Optional title for attachment, e.g., original filename of attachment.

2. attach_type. Object identifier that specifies type of attachment. The format of the
CMC_object_identifier is defined in Section 3.12. A NULL value designates an undefined attachment
type.

Two Object Identifiers have been predefined for use by applications and CMC implementations.
CMC_ATT_OID_BINARY Data in file should be treated as binary data. This is the

default.
CMC_ATT_OID_TEXT Data in file should be treated as a text string. It should be

assumed to be in the character set for the session on input and mapped to the character set for
the session on output if possible.

3. attach_filename. Name of file where attachment content is located. The location of the file is
implementation dependent, but should ensure access by the calling application.

The current release of A.P.I./3000 only supports file names in MPE filespace.

4. attach_flags. Bits for boolean attributes. Unused bits must be clear.

1. CMC_ATT_APP_OWNS_FILE
Set: Indicates on output that the application now owns the file and is responsible for deleting it.

This is ignored on input.
Clear: Indicates on output that the CMC implementation owns the file and the application can

only read the file.

2. CMC_ATT_LAST_ELEMENT
Set: Identifies the last structure in an array of such structures.
Clear: This is not the last array element.

5. attach_extensions. Pointer to first element in array of per-attachment extensions. A value of NULL
indicates that no extensions are present.

Common Messaging Call API Page: 15

3.3. Boolean

NAME

Boolean - type definition for a Boolean data value.

C DECLARATION

typedef CMC_uint16 CMC_boolean;

DESCRIPTION

A data value of this data type is a Boolean, i.e. either false or true.

In the C interface, false is denoted by zero {CMC_FALSE}, and true is denoted by any other integer,
although the symbolic constant {CMC_TRUE} refers to the integer one specifically.

3.4. Buffer

NAME

Buffer - type definition for storage space in memory of an undefined type.

C DECLARATION

typedef void * CMC_buffer;

DESCRIPTION

A data value of this data type is a pointer to a storage location in memory of an undefined type. The size of
a void * is specific to the platform.

3.5. Counted String

NAME

Counted string - type definition for a CMC counted string structure.

C DECLARATION

typedef struct {
CMC_uint32 length;
char string[1];

} CMC_counted_string;

DESCRIPTION

A data value of this type is a counted string where the length of the string is explicitly specified preceding
the character array. The string is not required to be null-terminated.

Page: 16 Common Messaging Call API

Support for a counted string data type is optional. Its purpose is to provide support for character sets in
which embedded nulls are allowed.

See the CMC_string type for information about determining the character set.

The components of a counted string are:

1. length. Byte length of string that follows.

2. string. The characters that make up the string.

Currently, A.P.I./3000 does not support counted strings.

3.6. Enumerated

NAME

Enumerated - type definition for an Enumerated data value.

C DECLARATION

typedef CMC_sint32 CMC_enum;

DESCRIPTION

A data value of this data type contains a value selected from an enumerated list.

3.7. Extension

NAME

Extension - type definition for a CMC extension structure.

C DECLARATION

typedef struct {
CMC_uint32 item_code;
CMC_uint32 item_data;
CMC_buffer item_reference;
CMC_flags extension_flags;

} CMC_extension;

DESCRIPTION

A data value of this type is an extension. The same extension structure is used to specify and receive
extension information related to CMC function calls and CMC data structures.

In general, function calls and data structures may allow input and output extensions, with the direction
implied by the extension item code. Input extensions may refer to storage allocated by the application and
output extensions may refer to storage allocated by the CMC service. For example, some cmc_act_on()

Common Messaging Call API Page: 17

implementations might allow saving of partially completed messages to the inbox for later reading and
sending by using the CMC_X_COM_SAVE_MESSAGE extension to pass in the message structure and
receive back the resulting message reference. For the complete list of common message extensions
specified in this document, see Appendix B.

For CMC extension arrays that may contain output extension storage allocated by the CMC service, callers
must use cmc_free() to free the pointer returned in the item_reference field. These structures are identified
by the output flag CMC_EXT_OUTPUT set and a non-NULL item_reference value. Callers explicitly
request output function extensions from function calls by setting the appropriate extension item_code. All
substructures contained in the allocated memory will be freed when the base structure pointer is freed.

Data extensions do not need to be freed explicitly since they are freed with the structure they are contained
in. For example, the message_extensions array resulting from cmc_read() is implicitly freed when
cmc_free() is called for the enclosing message structure.

An extension has the following components:

1. item_code. A code that uniquely identifies this extension.

2. item_data. Depending on the item_code, item_data may hold the length of the item value, the item
value itself or other information about the item. The specification of the extension describes how this
field should be interpreted.

3. item_reference. Depending on the item_code, item_reference may hold a pointer to where the item
value is stored or NULL if there is no related item storage. The specification of the extension describes
how this field should be interpreted.

4. extension flags. Bits for boolean attributes. The upper 16 bits are reserved for definition by the CMC
specification. Any unused bits of these must be clear. The lower 16 bits of flags are reserved for
definition by the extension.

1. CMC_EXT_REQUIRED
Set: Return an error if this extension cannot be supported.
Clear: Allow "best effort" support, including no support, of this extension.

2. CMC_EXT_OUTPUT
Set: Indicates on output extensions that this extension contains a pointer to memory allocated

by the CMC implementation which must be freed with cmc_free().
Clear: The implementation did not allocate memory for the extension that the application needs

to free. This flag is always clear on data extensions as described above.

3. CMC_EXT_LAST_ELEMENT
Set: Identifies the last structure in an array of such structures. This must be at the end of the

extension array.
Clear: This is not the last array element.

Currently, A.P.I./3000 does not support any extensions. You may pass them, but they will be ignored. If
the CMC_EXT_REQUIRED flag is set on any of them, the
CMC_E_UNSUPPORTED_FUNCTION_EXT error will be returned.

Page: 18 Common Messaging Call API

3.8. Flags

NAME

Flags - type definition for a CMC flag.

C DECLARATION

typedef CMC_uint32 CMC_flags;

DESCRIPTION

A data value of this type contains 32 flag bits. The meaning of the bits depends on the context in which the
flags data value is used. Undocumented flags are reserved. Flags set to zero are referred to as "clear."
Flags set non-zero are referred to as "set." Unspecified flags should always be clear.

3.9. Message

NAME

Message - type definition for a CMC message structure.

C DECLARATION

typedef struct {
CMC_message_reference *message_reference;
CMC_string message_type;
CMC_string subject;
CMC_time time_sent;
CMC_string text_note;
CMC_recipient *recipients;
CMC_attachment *attachments;
CMC_flags message_flags;
CMC_extension *message_extensions;

} CMC_message;

DESCRIPTION

A data value of this type is a message. A message has the following components:

1. message_reference. Identifies the message. The message reference is unique within a mailbox.

2. message_type. String that identifies the type of the message. Three different string identifiers may be
used:

a. Object Identifiers - used for types identified by object identifiers as defined in CCITT
Recommendation X.208.

b. CMC Registered Values - used for types defined in this specification.
c. Bilaterally Defined Values - used for types that are unregistered.

NOTE: Bilaterally defined values are not ensured to be unique.

Common Messaging Call API Page: 19

The format of each type is given below. White space can be any combination of tabs or spaces. '*'
indicates 1 or more of the denoted token (separated by white space) is valid. Quoted strings are case
insensitive.

message_type_value ::= oid | cmc_reg | bilat_def
oid ::= "OID:" object_identifier
cmc_reg ::= "CMC:" cmc_registered_value
bilat_def ::= "BLT:" string
object_identifier ::= object_id_component*
object_id_component ::= integer
cmc_registered_value ::= "IPM" | "IP RN" | "IP NRN" | "DR" | "NDR"

These registered values are defined as follows:
"CMC: IPM" Interpersonal message. An interpersonal message is a memo-like message

containing a recipient list, an optional subject, an optional text note, and zero or
more attachments. The "Message" structure is optimized to accommodate a message
of type IPM.

"CMC: IP RN" Receipt notification for an interpersonal message. A receipt notification indicates
that a message has been read by the recipient.

"CMC: IP NRN" Non-receipt notification for an interpersonal message. A non-receipt notification
indicates that a message has been removed from the recipient's mailbox without
being read (for instance, the message has been discarded by the user or the service or
it has been auto-forwarded to another recipient).

"CMC: DR" Delivery report. A delivery report indicates that the service was able to deliver a
message to the recipient.

"CMC: NDR" Non-delivery report. A non-delivery report indicates that the service was not able to
deliver a message to the recipient.

The format of these message types within the structures defined depend upon the messaging protocols that
have been employed by the messaging service. Often non-IPM messages take the form of a program
generated message, which follows a memo-like format (similar to that of an IPM) but whose purpose is to
convey information about a previously sent message.

NOTE: These messages types correspond to X.400 message types; however, the types may be used with
non-X.400 messaging services. Thus, these CMC message types are meant to apply generically and not
specifically to X.400.

Example valid identifiers are:

OID: 1 2 840 113556 3 2 850
CMC: IPM
BLT: my special message type

A canonical form of these types is also defined to allow an application to easily compare these strings. The
CMC implementation will always return the canonical form. In the canonical form:

1. all white space is converted to a single space, and all tokens will be separated by a whitespace
2. the type identifiers (i.e. OID, CMC, BLT) are converted to upper-case.

Some CMC implementations will only support the interpersonal message type (CMC: IPM). Other types
of messages may be treated as IPM messages or may generate an error on those implementations.

A.P.I./3000 currently treats all messages as CMC: IPM (no special optimizations are done).

Page: 20 Common Messaging Call API

It is undefined what the implementation will do with strings that are not in one of these formats.

3. subject. Message's subject string.

4. time_sent. Date/time message was sent (submitted).

5. text_note. Message's text note string. If the value is NULL there is no text note. If the
CMC_TEXT_NOTE_AS_FILE flag is set the text note is in the first attachment.

The format of the text note, regardless of whether it is passed in memory or in a file, is a sequence of
paragraphs, with the appropriate line terminator for the platform (CR for Macintosh, LF for Unix, CR/LF
for DOS and Windows, etc.) terminating each paragraph. Long lines (paragraphs) may be word wrapped
by the CMC implementation. Note that there is no guaranteed fidelity (e.g., a long paragraph may be
returned by the CMC read functions as a series of shorter paragraphs).

6. recipients. Pointer to first element in array of recipients of the message.

7. attachments. Pointer to first element in array of attachments for the message.

8. message_flags. Bits for boolean attributes. Unused bits must be clear.

1. CMC_MSG_READ
Set: Message has been read.
Clear: Message has not been read.

2. CMC_MSG_TEXT_NOTE_AS_FILE
Set: Text-note field is ignored and the text_note text is contained in the file referred to by the

first attachment.
Clear: Text_note text is contained in the text note string.

3. CMC_MSG_UNSENT
Set: Message has not been sent (i.e., it is a draft). This type of message can be created with the

CMC_X_COM_SAVE_MESSAGE extension.
Clear: Message has been sent.

4. CMC_MSG_LAST_ELEMENT
Set: Identifies the last structure in an array of such structures.
Clear: This is not the last array element.

9. message_extensions. Pointer to first element in array of per-message extensions.

3.10.Message Reference

NAME

Message Reference - type definition for a CMC message reference structure.

C DECLARATION
typedef CMC_counted_string CMC_message_reference;

DESCRIPTION

Common Messaging Call API Page: 21

A data value of this type is a counted string that is the message handle used by the mailbox. A Message
Reference is only guaranteed to be valid for the life of the session and has no guaranteed correspondence to
any message identifier used by the underlying messaging system. Within the session lifetime, it may be
copied by the application program.

3.11.Message Summary

NAME

Message Summary - type definition for a CMC message summary structure.

C DECLARATION

typedef struct {
CMC_message_reference *message_reference;
CMC_string message_type;
CMC_string subject;
CMC_time time_sent;
CMC_uint32 byte_length;
CMC_recipient *originator;
CMC_flags summary_flags;
CMC_extension *message_summary_extensions;

} CMC_message_summary;

DESCRIPTION

A data value of this type is a message summary. A message summary has the following components:

1. message_reference. See definition in Message Structure.

2. message_type. See definition in Message Structure.

3. subject. See definition in Message Structure.

4. time_sent. See definition in Message Structure.

5. byte_length. Message size. The value should include all associated features of the message --
attachments, envelope and heading fields, etc. Implementations may return an approximate value or the
constant CMC_LENGTH_UNKNOWN if the length is unknown or unavailable.

6. originator. Message originator.

7. summary_flags. Bits for boolean attributes. Unused bits must be clear.

1. CMC_SUM_READ
Set: Message has been read.
Clear: Message has not been read.

2. CMC_SUM_UNSENT
Set: Message has not been sent (i.e., it is a draft).
Clear: Message has been sent.

Page: 22 Common Messaging Call API

3. CMC_SUM_LAST_ELEMENT
Set: Identifies the last structure in an array of such structures.
Clear: This is not the last array element.

8. message_summary_extensions. Pointer to first element in array of per-message-summary extensions.

3.12.Object Identifier

NAME

Object Identifier - type definition for a CMC Object Identifier structure.

C DECLARATION

typedef CMC_string CMC_object_identifier;

DESCRIPTION

A data value of this type is an object identifier as defined in CCITT Recommendation X.208. It is globally
unambiguous. Its syntax as used in this specification shall match the Number form in X.208. This syntax
is:

object_identifier ::= object_id_component*
object_id_component ::= integer

An example of an object identifier is:
1 2 840 113556 3 2 850

Note: The format of the object_identifier string is the same as the one used in the OID message type.

3.13.Recipient

NAME

Recipient - type definition for originator/recipient structure.

C DECLARATION

typedef struct {
CMC_string name;
CMC_enum name_type;
CMC_string address;
CMC_enum role;
CMC_flags recip_flags;
CMC_extension *recip_extensions;

} CMC_recipient;

DESCRIPTION

A data value of this type is an originator or recipient. This structure has the following components:

Common Messaging Call API Page: 23

1. name. Recipient display name. Whether to interpret the name as an individual first, then as a group, if
such an individual is not found, or vice versa, is left up to the implementation when resolving the name
to an address.

2. name_type. Recipient type, enumerated:

CMC_TYPE_UNKNOWN (= 0) Unknown recipient type.
CMC_TYPE_INDIVIDUAL Recipient is an individual.
CMC_TYPE_GROUP Name is a distribution list.

Note: This is meaningful only if name is present. It is set by the implementation on output. On input it can
be used as a hint to optimize resolution of the name.

3. address. Recipient address which is acceptable to the underlying messaging service. The format of the
address string is not defined by this specification. It is intended to accommodate any string notation(s)
supported by a given implementation, as configured at a given installation. End users should consult the
manager of the their local service to discover what string notation(s) are supported at their installation.

4. role. Role of recipient, enumerated:

CMC_ROLE_TO TO (primary) recipient.
CMC_ROLE_CC CC recipient.
CMC_ROLE_BCC BCC recipient.
CMC_ROLE_ORIGINATOR Originator of message.
CMC_ROLE_AUTHORIZING_USER Authorizing user of message.

A CC recipient may (silently) be converted to a TO recipient if the underlying messaging service cannot
support CC recipients. Services that cannot support BCCs should reject messages containing them. For
the same recipient to be present with more than one role, multiple recipient entries, differing in role, are
required.

The CMC implementation should return the recipient array in the following order on output. The
originator should be the first element in the array, followed by the TO, CC, and BCC recipients grouped
together in that order. The authorizing user, if one exists, should be the final recipient in the array. There
is no ordering required on input.

5. recip_flags. Bits for boolean attributes. Unused bits must be clear.

1. CMC_RECIP_IGNORE
Set: Ignore this recipient (useful for re-using an incoming message's recipient list for a reply).
Clear: Do not ignore this recipient.

2. CMC_RECIP_LIST_TRUNCATED
Set: Indicates that not all recipient structures requested were returned by the system. This is

only used on the cmc_look_up() function when the complete list of recipients matching
the search name could not be returned. This flag will only be set in the last structure in the
array.

Clear: The complete recipient array was returned.

3. CMC_RECIP_LAST_ELEMENT
Set: Identifies the last structure in an array of such structures.
Clear: This is not the last array element.

Page: 24 Common Messaging Call API

6. recip_extensions. Pointer to first element in array of per-recipient extensions.

3.14.Return Code

NAME

Return Code - type definition for a value returned from all CMC functions.

C DECLARATION

typedef CMC_uint32 CMC_return_code;

DESCRIPTION

A return code is defined as a 32 bit value. A non-zero value indicates an error with the error code being
indicated by the value returned. A return value of zero indicates success. Values contained within the
low order 16 bits are reserved for error codes defined in this specification. Values contained within the
high order 16 bits are reserved for implementation defined error codes while the low order 16 bits should
be set to an appropriate CMC error.

Errors may be resolved within the scope of a CMC call using, for example, dialogs available through the
user interface. If a dialog is invoked to resolve the error, but the error remains unresolved after the
dialog has ended, the bit flag defined in CMC_ERROR_UI_DISPLAYED is set in the error to indicate
that the error has already been displayed to the user.

3.15.Session ID

NAME

Session ID - type definition for a CMC session ID.

C DECLARATION

typedef system-defined, e.g., uint32 CMC_session_id;

DESCRIPTION

Opaque session ID. The context identified by the session ID contains per-session information such as
the character set in use and handles for any open session(s) with underlying messaging service(s). The
CMC_session_id is created by the CMC Logon function and destroyed by the CMC Logoff function.

See Appendix D for the definition for a specific platform.

3.16.String

NAME

String - type definition for a CMC character string.

Common Messaging Call API Page: 25

C DECLARATION

typedef char * CMC_string;

DESCRIPTION

A data value of this type is a string. The char array pointed to is interpreted as a null-terminated array of
char by default. All implementations must support null terminated strings. The width of a character and
the corresponding null terminating character are determined by the character set chosen.

If an application wishes to use counted strings instead of null terminated and the CMC implementation
supports it, the application will set the CMC_COUNTED_STRING_TYPE flag when logging into the
session. The data pointed to by CMC_string will then be assumed to be in the data format of
CMC_counted_string. If implicit logon is done with a function, this flag must be set in the flags parameter.

To determine the character set of characters in the string, the CMC implementation looks at the session
context. If there is no session context created before the call, the string will be interpreted using the
implementations default character set. The implementation should always attempt to map all strings passed
to the client application to the character set for the session.

3.17.Time

NAME

Time - type definition for a CMC time structure.

C DECLARATION

typedef struct{
CMC_sint8 second;
CMC_sint8 minute;
CMC_sint8 hour;
CMC_sint8 day;
CMC_sint8 month;
CMC_sint8 year;
CMC_sint8 isdst;
CMC_sint16 tmzone;

} CMC_time;

DESCRIPTION

A data value of this type is a time value. A time value has the following components.

1. second. Seconds; range 0..59.

2. minute. Minutes; range 0..59.

3. hour. Hours since midnight; range 0..23.

4. day. Day of the month; range 1..31.

5. month. Months since January; range 0..11.

Page: 26 Common Messaging Call API

6. year. Years since 1900.

7. isdst. Daylight savings time flag; non-zero implies daylight savings.

8. tmzone. Time zone, in minutes relative to Greenwich Mean Time. The defined value,
CMC_NO_TIMEZONE, indicates that time zone is not available.

All time values are in the appropriate local time. For example, the time_sent field in the CMC_message
and CMC_message_summary structures is in the local time of the sender. Note that if the tmzone field is
set to any value other than CMC_NO_TIMEZONE, then the time value can be converted into the local
time of the caller, although the actual conversion functionality falls outside the scope of CMC.

3.18.User Interface ID

NAME

User Interface Identifier - type definition for a CMC user interface handle.

C DECLARATION

typedef system-defined, e.g., uint32 CMC_ui_id;

DESCRIPTION

Value used for passing user interface information to CMC functions. For example, in a windows-based
environment this would be the parent-window handle for the calling application.
A value of NULL is always valid, with the appropriate default behavior defined by the implementation.
Note that CMC implementations are not required to provide UI, and providing a user interface for one
feature does not necessarily imply that a user interface is available for all features of CMC.

A.P.I./3000 does not currently provide a UI.

See Appendix D for the definition for a specific platform.

Common Messaging Call API Page: 27

4. Functional Interface

This section defines the functions of the Common Messaging Call interface. The functions of both the
generic and C interfaces are specified. Those of the C interface are repeated in Section 4.6, Declaration
Summary. Table 4-1 lists the functions of the CMC interface.

Function Description
Sending Messages

Send Send a mail message.
Send Documents string based function to send mail.

Receiving Messages
Act On Perform an action on a specified message
List List summary information about messages meeting specified criteria.
Read Read and return a specified message.

Looking up Names
Look Up Looks up addressing information

Administration
Free Free memory allocated by the messaging service.
Logoff Terminate a session with the messaging service.
Logon Establish a session with the messaging service.
Query Configuration Determine information about the installed CMC service.

Table 4-1: CMC Interface Functions

The manual pages for these functions are given in subsequent pages.

Page: 28 Common Messaging Call API

4.1. Sending Messages

4.1.1. Send

NAME

Send - send a mail message.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_send(

CMC_session_idsession,
CMC_message *message,
CMC_flags send_flags,
CMC_ui_id ui_id,
CMC_extension *send_extensions

);

DESCRIPTION

This function sends a mail message. It can, at the option of the caller, either prompt via a user
interface (e.g. a dialog box) for message creation or proceed without any user interaction.

The caller can optionally provide a list of recipients, subject text, attachments and/or note text. If
required message elements are not provided, the function can prompt the user for them if UI is
specified and supported. If one or more recipients are provided, the function can send the message
without prompting the user. If the optional parameters are specified and a dialog box is requested,
the parameters provide the initial values for the dialog box.

The successful return of this function does not necessarily imply the validation of recipients.

ARGUMENTS

Session (Session Id)

Opaque session handle which represents a session with the messaging service.

Session handles are created by a logon function call and invalidated with a logoff
function call.

If the session handle is invalid and a valid session is not created through UI, then
the error CMC_E_INVALID _SESSION_ID is returned.

Message (Message)

Common Messaging Call API Page: 29

Message structure containing the contents of the message to be sent. If the flag
CMC_SEND_UI_REQUESTED is not set or supported, there must be at least one
recipient of type TO, CC, or BCC.

All other fields are optional. The time_sent and message_reference fields are
ignored.

The following conditions on the message structure fields apply:

Recipients The number of recipients per message may be limited in some services.
If the limit is exceeded, the error CMC_E_TOO_MANY _RECIPIENTS is returned. If
zero recipients are specified, a pointer value of NULL should be assigned to
recipients.

The recipient descriptor can include either the recipient’s name, an address, or
name/address pair. If just a name is specified, the name is resolved to an address
using implementation-defined name resolution rules. If just an address is
specified, then this address is used for delivery and for the recipient display name.
If both an address and a name are specified, a resolution of the name should not be
performed. If an implementation cannot support both names and addresses, then
the name is ignored. The address is in an implementation-defined format and is
assumed to have been obtained from the implementation using some other means.
A recipient of type originator is not required for send; if present its action is
defined by the CMC implementation.

Attachments The number of attachments per message may be limited in some
services. If the limit is exceeded, the CMC_E_TOO_MANY _FILES is returned. A
pointer value of NULL indicates no attachments. The attachment files are read
before the cmc_send() function returns, so that the files may be freely changed or
deleted without affecting the message.

Subject - A pointer value of NULL indicates no subject text. Some
implementations may truncate subject lines which are too long or contain carriage
returns/line feeds/form feeds.

Note Text - A pointer value of NULL indicates no text. Implementations may
place limits on the size of the text. If the note text exceeds the limit of the service,
it may demote the body text to an attachment or generate the error
CMC_E_TEXT_TOO_LARGE.

Message Type -- Pointer to a string which is the message type . The type specifies
the type of message being sent (see description of Message data structure for
details). To specify an interpersonal message, the string "CMC: IPM" is used. If a
pointer value of NULL or a pointer to an empty string is given, the value "CMC:
IPM" is assumed.

Flags The following flag may be used when sending a message
CMC_MSG_TEXT_NOTE_AS_FILE

All other flags will be ignored. For more information on these flags see the
description of the message structure.

Send Flags (Flags)

Page: 30 Common Messaging Call API

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented
flags are reserved.

CMC_LOGON_UI_ALLOWED
CMC_SEND_UI_REQUESTED
CMC_ERROR_UI_ALLOWED
CMC_COUNTED_STRING_TYPE

CMC_LOGON_UI_ALLOWED - Set if the function should display a dialog box
to prompt for logon if required. If not set, the function will not display a dialog
box and will return the error CMC_E_INVALID _SESSION_ID if the user is not logged
on.

CMC_SEND_UI_REQUESTED - Set if the function should display a dialog box
to prompt for recipients, the message fields, and other sending options. If not set,
the function will not display a dialog box, but at least one recipient must be
specified.

CMC_ERROR_UI_ALLOWED - Set if the function may display a dialog box on
encountering recoverable errors. If not set, the function may not display a dialog
box and will simply return an error code.

CMC_COUNTED_STRING_TYPE - Set if the string type used in the message is
counted string. If not set, the strings are assumed to be null terminated. If the
session parameter is valid, this flag is ignored.

UI Identifier (UI Id)

User Interface handle (e.g. dialog window) for use in resolving any questions
which arise when the service performs the function, in prompting the user for
additional information, or in verifying or acknowledging information which has
been provided.

Ignored if UI is not supported by the CMC implementation.

Send Extensions (Extensions)

A pointer to an array of CMC_extension structures for this function. The array
may contain both input extensions for providing additional information to the
function and output extensions for receiving information from the function. A
value of NULL indicates that the caller is not using any extensions. See the
extensions structure for more information.

RESULTS

Send Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results
from the service will be available in the extension. See the extensions structure for
more information.

Return Code (Return Code)

Common Messaging Call API Page: 31

Indicates whether the function succeeded or not, and, if not, why. It may be
success or one of the values listed under ERRORS below.

ERRORS
CMC_E_ATTACHMENT_NOT_FOUND

CMC_E_ATTACHMENT_OPEN_FAILURE

CMC_E_ATTACHMENT_READ_FAILURE

CMC_E_ATTACHMENT_WRITE_FAILURE

CMC_E_FAILURE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID _FLAG

CMC_E_INVALID _MESSAGE_PARAMETER

CMC_E_INVALID _PARAMETER

CMC_E_INVALID _SESSION_ID

CMC_E_INVALID _UI_ID

CMC_E_LOGON_FAILURE

CMC_E_RECIPIENT_NOT_FOUND

CMC_E_TEXT_TOO_LARGE

CMC_E_TOO_MANY _FILES

CMC_E_TOO_MANY _RECIPIENTS

CMC_E_UNSUPPORTED_DATA_EXT

CMC_E_UNSUPPORTED_FLAG

CMC_E_UNSUPPORTED_FUNCTION_EXT

CMC_E_USER_CANCEL

CMC_E_USER_NOT_LOGGED_ON

Page: 32 Common Messaging Call API

4.1.2. Send Documents

NAME

Send Documents- string based function to send mail.

SYNOPSIS

CMC_return_code
cmc_send_documents(

CMC_string recipient_addresses,
CMC_string subject,
CMC_string text_note,
CMC_flags send_doc_flags,
CMC_string file_paths,
CMC_string attach_titles,
CMC_string delimiter,
CMC_ui_id ui_id

);

DESCRIPTION

This function sends a mail message. This function is primarily intended for calling from a
"scripting" language (e.g. spreadsheet macro) that cannot handle data structures.

This function will try to establish a session without logon UI. If this is not possible, it will prompt
for logon information to establish a session. The session is always closed on completion.

ARGUMENTS

Recipient Addresses (String)

Pointer to a string containing the recipient addresses for the message. When
multiple recipients are specified, they should be separated by the Delimiter
character. Recipients are assumed to be primary recipients unless prefixed by "cc:"
or "bcc:" for copy recipients and blind copy recipients. The prefix "to:" may also
be used for consistency. A pointer value of NULL indicates that recipients should
be prompted for in a dialog.

Subject (String)

Pointer to a string containing the subject of a message. A pointer value of NULL
indicates no subject text.

Text Note (String)

Pointer to a string containing the note text to be carried with the message. A
pointer value of NULL indicates no note text.

Send Doc Flags (Flags)

Common Messaging Call API Page: 33

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented
flags are reserved.

CMC_LOGON_UI_ALLOWED
CMC_SEND_UI_REQUESTED
CMC_ERROR_UI_ALLOWED
CMC_COUNTED_STRING_TYPE
CMC_FIRST_ATTACH_AS_TEXT_NOTE

CMC_LOGON_UI_ALLOWED - Set if the function should display a dialog box
to prompt for logon if required. If not set, the function will not display a dialog
box and will return the error CMC_E_USER_NOT_LOGGED_ON if the user is not
logged on.

CMC_SEND_UI_REQUESTED - Set if the function should display a dialog UI to
prompt for recipients, the message fields, and other sending options. If not set, the
function will not display a dialog box, but at least one recipient must be specified.

CMC_ERROR_UI_ALLOWED - Set if the function may display a dialog box on
encountering recoverable errors. If not set, the function may not display a dialog
box and will simply return an error code.

CMC_COUNTED_STRING_TYPE - Set if the string type used in the message is
counted string. If not set, the strings are assumed to be null terminated.

CMC_FIRST_ATTACH_AS_TEXT_NOTE - Set if the first attachment should be
sent as the message text note. If not set, the text note is contained in the text note
field.

File Paths (String)

Pointer to a string containing the actual path names for the attachment files. When
multiple path names are specified, they should be separated by the Delimiter
character.

Attach Titles (String)

Pointer to a string containing the attachment titles to be seen by the recipient.
When multiple names are specified, they should be separated by the Delimiter
character.

Delimiter (String)

Pointer to a character that is used to delimit the names in the FilePaths, File
Names, and Recipient Addresses strings. This character should be chosen to be
one not used in operating system file names or recipient names. This parameter
cannot be NULL.

UI Identifier (UI Id)

Pointer to an identifier for a User Interface (e.g. dialog window) for use in
resolving any questions which might otherwise result in an error and queries the
user for additional information as required.

Page: 34 Common Messaging Call API

Ignored if UI is not supported by the CMC implementation.

RESULTS

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one
of the values listed under ERRORS below.

ERRORS
CMC_E_ATTACHMENT_NOT_FOUND

CMC_E_ATTACHMENT_OPEN_FAILURE

CMC_E_ATTACHMENT_READ_FAILURE

CMC_E_ATTACHMENT_WRITE_FAILURE

CMC_E_FAILURE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID _FLAG

CMC_E_INVALID _PARAMETER

CMC_E_INVALID _UI_ID

CMC_E_LOGON_FAILURE

CMC_E_RECIPIENT_NOT_FOUND

CMC_E_TEXT_TOO_LARGE

CMC_E_TOO_MANY _FILES

CMC_E_TOO_MANY _RECIPIENTS

CMC_E_UNSUPPORTED_FLAG

CMC_E_USER_CANCEL

CMC_E_USER_NOT_LOGGED_ON

Common Messaging Call API Page: 35

4.2. Receiving Messages

4.2.1. Act On

NAME

Act On - perform an action on a specified message.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_act_on(

CMC_session_id session,
CMC_message_reference *message_reference,
CMC_enum operation,
CMC_flags act_on_flags,
CMC_ui_id ui_id,
CMC_extension *act_on_extensions

);

DESCRIPTION

This function performs the action specified on the message indicated by the message_reference.

ARGUMENTS

Session (Session Id)

Opaque session handle which represents a session with the messaging service.

Session handles are created by a logon function call and invalidated with a logoff
function call.

If the session handle is invalid, then the error CMC_E_INVALID _SESSION_ID is
returned.

Message Reference (Message Reference)

Specifies the message reference of the message to be acted upon.

If the message reference is invalid (or no longer valid, such as after it has been
deleted), then the error CMC_E_INVALID _MESSAGE_REFERENCE is returned. NULL
message reference pointers and message references of length zero are considered
invalid for operations that require this parameter.

Page: 36 Common Messaging Call API

Operation (Enum)

The operation to perform on the message. Valid operations include:

CMC_ACT_ON_EXTENDED (= 0)
CMC_ACT_ON_DELETE

CMC_ACT_ON_EXTENDED - look in the list of extensions for the action to
carry out.

CMC_ACT_ON_DELETE - Action requested is to delete the specified message
from mailbox. This operation requires a valid message reference parameter.

Act On Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented
flags are reserved. Flag settings include:

CMC_ERROR_UI_ALLOWED

CMC_ERROR_UI_ALLOWED - Set if the function may display a dialog box on
encountering recoverable errors. If not set, the function may not display a dialog
box and will simply return an error code.

UI Id (UI Id)

User Interface handle (e.g. dialog window) for use in resolving any questions
which might otherwise result in an error.

Ignored if UI is not supported by the CMC implementation.

Act On Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array
may contain both input extensions for providing additional information to the
function and output extensions for receiving information from the function. A
value of NULL indicates that the caller is not using any extensions. See the
extensions structure for more information.

RESULTS

Act On Extensions (Extension)

If output extensions were passed to the function in the extensions list, the results
from the service will be available in the extension. See the extensions structure for
more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one
of the values listed under ERRORS below.

ERRORS
CMC_E_FAILURE

Common Messaging Call API Page: 37

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID _ENUM

CMC_E_INVALID _FLAG

CMC_E_INVALID _MESSAGE_REFERENCE

CMC_E_INVALID _PARAMETER

CMC_E_INVALID _SESSION_ID

CMC_E_INVALID _UI_ID

CMC_E_MESSAGE_IN_USE

CMC_E_UNSUPPORTED_ACTION

CMC_E_UNSUPPORTED_FLAG

CMC_E_UNSUPPORTED_FUNCTION_EXT

Page: 38 Common Messaging Call API

4.2.2. List

NAME

List - list summary information about messages which meet a specified criteria.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_list(

CMC_session_id session,
CMC_string message_type,
CMC_flags list_flags,
CMC_message_reference *seed,
CMC_uint32 *count,
CMC_ui_id ui_id,
CMC_message_summary **result,
CMC_extension *list_extensions

);

DESCRIPTION

This function lists summary information, including a message reference, about messages which meet
the specified criteria. Using the returned message reference(s), the message(s) may be further
processed using cmc_read() and cmc_act_on().

Optional criteria include:
- the message is of a specified message type, and
- the message is as yet unread.

The search begins after a specified "seed" message reference, or at the beginning of the mailbox. A
maximum number of messages to list can be specified. The function returns the actual number of
messages returned. Optionally, each message summary returned in "result" can include only the
message reference.

ARGUMENTS

Session (Session Id)

Opaque session handle which represents a session with the messaging service.

Session handles are created by a logon function call and invalidated with a logoff
function call.

If the session handle is invalid, then the error invalid-session-id is returned.

Message Type (String)

Common Messaging Call API Page: 39

Information is returned only for messages of the specified type. If the type is not
recognized, the error CMC_E_UNRECOGNIZED_MESSAGE_TYPE will be returned.
The format of the Message Type string is given in Section 3.9.

A NULL indicates that information should be returned for all available messages.

List Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented
flags are reserved. Flag settings include:

CMC_ERROR_UI_ALLOWED
CMC_LIST_UNREAD_ONLY
CMC_LIST_MSG_REFS_ONLY
CMC_LIST_COUNT_ONLY

CMC_ERROR_UI_ALLOWED - Set if the function may display a dialog box on
encountering recoverable errors. If not set, the function may not display a dialog
box and will simply return an error code.

CMC_LIST_UNREAD_ONLY - If set, list should include only unread messages.
If not set, list may include both read and unread messages.

CMC_LIST_MSG_REFS_ONLY - If set, only Message Reference is populated in
the result structure. Values of other fields are undefined, and should be ignored. If
not set, all information in the result structure is returned.

CMC_LIST_COUNT_ONLY - If set, the function should not return any summary
structures, only the count of messages meeting the specified criteria. If not set,
summary structures will be returned.

Seed (Message Reference)

Specifies the message reference of the message after which the search should
begin. If the message reference is invalid (or no longer valid, such as after it has
been deleted), then the error CMC_E_INVALID _MESSAGE_REFERENCE is returned.

A NULL message reference seed pointer indicates that the search should start with
the first message in the mailbox.

Count (Uint32)

Specifies the maximum number of messages to return. A value of zero specifies
no maximum.

UI Id (UI Id)

User Interface handle (e.g. dialog window) for use in resolving any questions
which might otherwise result in an error.

Ignored if UI is not supported by the CMC implementation.

List Extensions (Extension)

Page: 40 Common Messaging Call API

A pointer to an array of CMC_extension structures for this function. The array
may contain both input extensions for providing additional information to the
function and output extensions for receiving information from the function. A
value of NULL indicates that the caller is not using any extensions. See the
extensions structure for more information.

RESULTS

Count (Uint32)

Specifies the number of messages actually returned. If no messages match the
criteria, or if the mailbox is empty, a value of zero is returned.

Result (Message Summary)

The "result" field is the address at which an array of CMC_message_summary
structures is to be returned. This array of structures are allocated by the service,
and the entire array should be freed with a single call to cmc_free().

The message reference field contained in each CMC_message_summary may be
used to identify messages in subsequent calls to cmc_read() and cmc_act_on().
Note that the message reference field may need to be copied prior to invoking
cmc_free() on this structure.

If the CMC_LIST_MSG_REFS_ONLY flag has been set , the
CMC_message_summary structures will return only message references. Values of
other fields are undefined, and should be ignored.

List Extensions (Extension)

If output extensions were passed to the function in the extensions list, the results
from the service will be available in the extension. See the extensions structure for
more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one
of the values listed under ERRORS below.

ERRORS
CMC_E_FAILURE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID _FLAG

CMC_E_INVALID _MESSAGE_REFERENCE

CMC_E_INVALID _PARAMETER

CMC_E_INVALID _SESSION_ID

CMC_E_INVALID _UI_ID

CMC_E_UNRECOGNIZED_MESSAGE_TYPE

CMC_E_UNSUPPORTED_FLAG

CMC_E_UNSUPPORTED_FUNCTION_EXT

Common Messaging Call API Page: 41

4.2.3. Read

NAME

Read - read and return a specified message.

SYNOPSIS

#include <xcmc.h>
CMC_return_code
cmc_read(

CMC_session_id session,
CMC_message_reference *message_reference,
CMC_flags read_flags,
CMC_message **message,
CMC_ui_id ui_id,
CMC_extension *read_extensions

);

DESCRIPTION

This function returns a message structure containing the data from the message indicated by the
specified message reference. Optionally, the message structure returned can include only the
message and attachment headers.

If the flag CMC_MSG_TEXT_NOTE_AS_FILE is set in the returned message structure, then the
text note field is contained in the file referred to by the first attachment.

For systems that can mark messages as read, a message will have the state "READ" after this
function successfully executes, unless the flag CMC_DO_NOT_MARK_AS_READ is set.

ARGUMENTS

Session (Session Id)

Opaque session handle which represents a session with the messaging service.

Session handles are created by a logon function call and invalidated with a logoff
function call.

If the session handle is invalid, then the error CMC_E_INVALID _SESSION_ID is
returned.

Message Reference (Message Reference)

Specifies the message reference of the message to be read and returned. If the
message reference is invalid (or no longer valid, such as after it has been deleted),
then the error CMC_E_INVALID _MESSAGE_REFERENCE is returned.

Page: 42 Common Messaging Call API

A NULL message reference pointer indicates that the first message in the mailbox
should be read and returned.

Read Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented
flags are reserved. Flag settings include:

CMC_ERROR_UI_ALLOWED
CMC_MSG_AND_ATT_HDRS_ONLY
CMC_DO_NOT_MARK_AS_READ
CMC_READ_FIRST_UNREAD_MESSAGE

CMC_ERROR_UI_ALLOWED - Set if the function may display a dialog box on
encountering recoverable errors. If not set, the function may not display a dialog
box and will simply return an error code.

CMC_MSG_AND_ATT_HDRS_ONLY - If set, the
attachments[n].attach_filename fields will be undefined when cmc_read() returns,
and should be ignored. This may be useful to reduce the amount of data
transferred. If clear, the attachment_filename fields will be returned normally.
Note that if CMC_MSG_TEXT_NOTE_AS_FILE is set in the message to indicate
that the text note is stored in the first attachment, the attachment_filename field
will be returned for that attachment regardless of the setting of this flag.

CMC_DO_NOT_MARK_AS_READ - If set, the state of the message is not
changed to read when the function is returned. This will also suppress sending of a
Receipt Report. The implementation can be queried to see if it supports this
feature with the CMC_CONFIG_SUP_NOMKMSGREAD in
cmc_query_config().

CMC_READ_FIRST_UNREAD_MESSAGE - This is only available when
passing a NULL message reference to receive the first message in the mailbox. If
set, the first message not marked as read should be returned. If not set, the first
message in the mailbox should be returned, whether it's marked as read or not.

UI Id (UI Id)

User Interface handle (e.g. dialog window) for use in resolving any questions
which arise when the service performs the function.

Ignored if UI is not supported by the CMC implementation.

Read Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array
may contain both input extensions for providing additional information to the
function and output extensions for receiving information from the function. A
value of NULL indicates that the caller is not using any extensions. See the
extensions structure for more information.

RESULTS

Common Messaging Call API Page: 43

Message (Message)

The "message" field is the address at which a pointer to a CMC_message structure
is to be returned. This structure is allocated by the service, and should be freed
with cmc_free().

Attachment data will be returned in files, and the CMC_message structure will
indicate the names of those files.

If the CMC_MSG_AND_ATT_HDRS_ONLY flag has been set (see "flags"), the
CMC_message structure will not return the attachment files as described above.

Read Extensions (Extension)

If output extensions were passed to the function in the extensions list, the results
from the service will be available in the extension. See the extensions structure for
more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one
of the values listed under ERRORS below.

ERRORS
CMC_E_ATTACHMENT_OPEN_FAILURE

CMC_E_ATTACHMENT_READ_FAILURE

CMC_E_ATTACHMENT_WRITE_FAILURE

CMC_E_DISK_FULL

CMC_E_FAILURE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID _FLAG

CMC_E_INVALID _MESSAGE_REFERENCE

CMC_E_INVALID _PARAMETER

CMC_E_INVALID _SESSION_ID

CMC_E_INVALID _UI_ID

CMC_E_TOO_MANY _FILES

CMC_E_UNABLE_TO_NOT_MARK_READ

CMC_E_UNSUPPORTED_FLAG

CMC_E_UNSUPPORTED_FUNCTION_EXT

Page: 44 Common Messaging Call API

4.3. Looking Up Names

4.3.1. Look Up

NAME

Look Up - Looks up addressing information in the directory.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_look_up(

CMC_session_idsession,
CMC_recipient *recipient_in,
CMC_flags look_up_flags,
CMC_ui_id ui_id,
CMC_uint32 *count,
CMC_recipient **recipient_out,
CMC_extension *look_up_extensions

);

DESCRIPTION

This function looks up addressing information in the directory provided by the CMC messaging
service. It primarily is used to resolves a friendly name to an address, optionally prompting the user
to choose among multiple resolved names or addresses when necessary if UI is specified and
supported. It can also be used to display UI for creation of address lists or displaying details about a
recipient.

Multiple addresses may be returned. An array of recipient descriptors is allocated and returned
containing fully resolved information about each entry.

ARGUMENTS

Session (Session Id)

Opaque session handle which represents a session with the messaging service.

Session handles are created by a logon function call and invalidated with a logoff
function call.

If the session handle is invalid and a valid session is not created through UI, then
the error CMC_E_INVALID _SESSION_ID is returned.

Recipient In (Recipient)

Common Messaging Call API Page: 45

For name resolution the name field in the structure contains the name to be
resolved. The name type can be set to provide information on desired resolution of
the name See the recipient structure documentation for possible types.

For displaying recipient details, the recipient structure must contain an entry that
resolves to only one recipient. If not, the error CMC_E_AMBIGUOUS_RECIPIENT will
be returned.

For displaying UI to create addressing lists, this will point to an array of recipients
that is terminated with the CMC_RECIP_LAST_ELEMENT flag. The list of
recipients will be used as the defaults for displaying in the address list UI.

For both name resolution and displaying recipient details, all recipient structures
except the first will be ignored.

Look Up Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented
flags are reserved. Flag settings include:

CMC_LOGON_UI_ALLOWED
CMC_ERROR_UI_ALLOWED
CMC_COUNTED_STRING_TYPE
CMC_LOOKUP_RESOLVE_PREFIX_SEARCH
CMC_LOOKUP_RESOLVE_IDENTITY
CMC_LOOKUP_RESOLVE_UI
CMC_LOOKUP_DETAILS_UI
CMC_LOOKUP_ADDRESSING_UI

CMC_LOGON_UI_ALLOWED - Set if the function should display a dialog box
to prompt for logon if required. If not set, the function will not display a dialog
box and will return the error CMC_E_INVALID _SESSION_ID if the user is not logged
on.

CMC_ERROR_UI_ALLOWED - Set if the function may display a dialog box on
encountering recoverable errors. If not set, the function may not display a dialog
box and will simply return an error code.

CMC_COUNTED_STRING_TYPE - Set if the string type used in the call
parameters is counted. If this is not set, the strings are assumed to be null
terminated. If the session parameter is valid, this flag is ignored.

CMC_LOOKUP_RESOLVE_PREFIX_SEARCH - If set, the search method
should be prefix. Prefix search means that all names matching the prefix string,
beginning at the first character of the name, will be matched. If not set, the search
method should be exact match. CMC implementations are required to support
simple prefix searching. The availability of wild-card or substring searches is
optional.

CMC_LOOKUP_RESOLVE_IDENTITY - If set, the function will return a
recipient record for the identity of the user in the mail system. If this cannot be
uniquely determined, ambiguous name resolution will be carried out. This allows
the application to find out the address of the current user.

Page: 46 Common Messaging Call API

CMC_LOOKUP_RESOLVE_UI -- Set if the CMC implementation should attempt
to disambiguate names by presenting a name resolution dialog to the user. If this
flag is not set, resolutions which do not result in a single name will return the error
CMC_E_AMBIGUOUS_RECIPIENT on services that must resolve to a single name.
Services that can return multiple names will return a list as indicated by other
function parameters. This flag is optional for implementations to support.

CMC_LOOKUP_DETAILS_UI - If set, the function will display details UI for
the recipient pointed to in recipient_in. This will only act on the first recipient in
the list. If the name resolves to more than one address, this will not be carried out
and the error CMC_E_AMBIGUOUS_RECIPIENT will be returned.

CMC_LOOKUP_ADDRESSING_UI - If set, the function will display UI to allow
creation of a recipient list for addressing a message and general directory
browsing. The recipient list passed to the function will be the original recipient list
for the UI. The function will return the list of recipients selected by the user. This
flag is optional for implementations to support.

UI Id (UI Id)

User Interface handle (e.g. dialog window) for use in resolving any questions
which arise when the service performs the function.

Ignored if UI is not supported by the CMC implementation.

Count (Uint32)

Specifies the maximum number of names to return. A value of 0 specifies no
maximum. The value will be returned in the location pointed to by this parameter.
A valid pointer to a location for the returned count information is required.

Look Up Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array
may contain both input extensions for providing additional information to the
function and output extensions for receiving information from the function. A
value of NULL indicates that the caller is not using any extensions. See the
extensions structure for more information.

RESULTS

Recipient Out (Recipient)

Pointer to an array of one or more recipient structures allocated by
cmc_look_up(). The structure may then be used in calls to cmc_send(). The
returned pointer is passed to cmc_free() to free all the recipient structures.

Count (Uint32)

Specifies the number of names actually returned. If no names match the criteria, a
value of 0 is returned, and the error CMC_E_RECIPIENT_NOT_FOUND is returned.

Common Messaging Call API Page: 47

If fewer names are returned than are known to be available, the
CMC_RECIP_LIST_TRUNCATED flag will be set in the last recipient structure
of the array along with the CMC_RECIP_LAST_ELEMENT flag.

Look Up Extensions (Extension)

If output extensions were passed to the function in the extensions list, the results
from the service will be available in the extension. See the extensions structure for
more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one
of the values listed under ERRORS below.

ERRORS
CMC_E_AMBIGUOUS_RECIPIENT

CMC_E_FAILURE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID _FLAG

CMC_E_INVALID _PARAMETER

CMC_E_INVALID _SESSION_ID

CMC_E_INVALID _UI_ID

CMC_E_LOGON_FAILURE

CMC_E_NOT_SUPPORTED

CMC_E_RECIPIENT_NOT_FOUND

CMC_E_UNSUPPORTED_DATA_EXT

CMC_E_UNSUPPORTED_FLAG

CMC_E_UNSUPPORTED_FUNCTION_EXT

CMC_E_USER_CANCEL

CMC_E_USER_NOT_LOGGED_ON

Page: 48 Common Messaging Call API

4.4. Administration

4.4.1. Free

NAME

Free - free memory allocated by the messaging service.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_free(

CMC_buffer memory
);

DESCRIPTION

This function frees memory allocated by the messaging service. After the call, the pointer memory
will be invalid and should not be referenced again. When any CMC function allocates and returns a
buffer to the application, the application will free that memory with this call when it is finished with
the memory.

When a CMC function returns a base pointer to a complex structure containing several levels of
pointers, all the application will do to free the entire structure or array of structures is call this routine
with the base pointer returned by the CMC function. The CMC functions which return structures of
this form are cmc_read(), cmc_list(), cmc_query_configuration(), and cmc_look_up().

cmc_free()'s behavior is undefined when called with a pointer to a memory block not allocated by
the messaging service, a pointer to a memory block that has already been freed, or a pointer
contained in a structure returned by the CMC implementation.

In some situations, the extensions specified for a function may be a combination of input and output
extensions. In this case, the output extensions must be freed one at a time using cmc_free(). An
example of this is shown in section 5 Programming Examples.

ARGUMENTS

Memory (Buffer)

A pointer to memory allocated by the messaging service. A value of NULL will be
ignored.

RESULTS

Return Code (Return Code)

Common Messaging Call API Page: 49

Whether the function succeeded or not, and, if not, why. It may be success or one
of the values listed under ERRORS below.

ERRORS
CMC_E_FAILURE

CMC_E_INVALID _MEMORY

Page: 50 Common Messaging Call API

4.4.2. Logoff

NAME

Logoff - log off the CMC service.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_logoff(

CMC_session_idsession,
CMC_ui_id ui_id,
CMC_flags logoff_flags,
CMC_extension *logoff_extensions

);

DESCRIPTION

This function allows the calling application to log off the CMC service.

ARGUMENTS

Session (Session Id)

Opaque session handle which represents a session with the messaging service. It
becomes invalid as a result of this call.

If the session handle is invalid, then the error CMC_E_INVALID _SESSION_ID is
returned.

UI Id (UI Id)

An identifier for a User Interface (e.g., the parent-window handle for the calling
application) for use in resolving any questions which might otherwise result in an
error.

Ignored if UI is not supported by the CMC implementation.

Logoff Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented
flags are reserved.

CMC_ERROR_UI_ALLOWED
CMC_LOGOFF_UI_ALLOWED

Common Messaging Call API Page: 51

CMC_ERROR_UI_ALLOWED - Set if the function may display a dialog box on
encountering recoverable errors. If not set, the function may not display a dialog
box and will simply return an error code.

CMC_LOGOFF_UI_ALLOWED - Set if the function may display UI other than
for errors while logging the user off from the session.

Logoff Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array
may contain both input extensions for providing additional information to the
function and output extensions for receiving information from the function. A
value of NULL indicates that the caller is not using any extensions. See the
extensions structure for more information.

RESULTS

Logoff Extensions (Extension)

If output extensions were passed to the function in the extensions list, the results
from the service will be available in the extension. See the extensions structure for
more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one
of the values listed under ERRORS below.

ERRORS
CMC_E_FAILURE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID _FLAG

CMC_E_INVALID _PARAMETER

CMC_E_INVALID _SESSION_ID

CMC_E_INVALID _UI_ID

CMC_E_UNSUPPORTED_FLAG

CMC_E_UNSUPPORTED_FUNCTION_EXT

CMC_E_USER_NOT_LOGGED_ON

Page: 52 Common Messaging Call API

4.4.3. Logon

NAME

Logon - log on to the CMC service.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_logon(

CMC_string service,
CMC_string user,
CMC_string password,
CMC_object_identifier character_set,
CMC_ui_id ui_id,
CMC_uint16 caller_cmc_version,
CMC_flags logon_flags,
CMC_session_id*session,
CMC_extension *logon_extensions

);

DESCRIPTION

This function allows the calling application to log on to the CMC service. It can, at the option of the
caller, either prompt via a user interface (e.g. a dialog box) if UI is supported by the implementation
or proceed without any user interaction.

The function returns a session ID which the application may use in subsequent CMC calls.

ARGUMENTS

Service (String)

A string indicating the location of the underlying messaging service, e.g., the path
to a message store or a remote server node name. This value may be NULL if the
underlying messaging service does not require a service name or if UI is allowed.
This may be necessary on some implementations and ignored on others.

The messaging service underlying a CMC implementation, or installation of an
implementation, may optionally support multiple messaging protocols
simultaneously. If multiple protocols are supported by an implementation, the
particular protocol is chosen by the service, based on criteria such as:

configuration of protocol support
dynamic availability of protocol support
capabilities of recipient (if known)
analysis of address format/notation used

Common Messaging Call API Page: 53

other system specific criteria
These criteria may be applied on a per-message or a per-recipient granularity.

User (String)

A string that identifies the CMC user, e.g., a messaging service user name. This
value may be NULL if the underlying messaging service does not require a user
name or if UI is allowed.

Password (String)

A string containing the password required for access to the CMC service. This
value may be NULL if the underlying messaging service does not require a
password or if UI is allowed.

Character Set (Object Identifier)

An object identifier identifying the character set of strings used by the CMC caller.
The possible values available to the client are returned by the CMC
implementation from cmc_query_configuration(). The client may pass NULL in
which case the character set used is determined by the CMC service.

UI Id (UI Id)

An identifier for a User Interface (e.g., the parent-window handle for the calling
application) for use in resolving any questions which might otherwise result in an
error, or for use in prompting for logon if allowed and required.

Ignored if UI is not supported by the CMC implementation.

Caller CMC Version (Uint16)

The calling application's CMC version number, multiplied by 100. For example,
version 1.01 is specified as the integer 101. The version of this specification is
1.00 and is represented as the value 100.

Logon Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented
flags are reserved.

CMC_LOGON_UI_ALLOWED
CMC_ERROR_UI_ALLOWED
CMC_COUNTED_STRING_TYPE

CMC_LOGON_UI_ALLOWED - Set if the function should display a dialog box
to prompt for logon if required. If not set, the function will not display a dialog
box and will return an error if not enough information has been supplied.

CMC_ERROR_UI_ALLOWED - Set if the function may display a dialog box on
encountering recoverable errors. If not set, the function may not display a dialog
box and will simply return an error code.

Page: 54 Common Messaging Call API

CMC_COUNTED_STRING_TYPE - The CMC caller sets this if the string type
that the caller uses for CMC interactions is length first. If not set, null-terminated
strings will be assumed.

Logon Extensions (Extensions)

A pointer to an array of CMC_extension structures for this function. The array
may contain both input extensions for providing additional information to the
function and output extensions for receiving information from the function. A
value of NULL indicates that the caller is not using any extensions. See the
extensions structure for more information.

Through extensions, the application can find out which extensions are available
and set which data extensions will be active for the session. The extension to do
this is CMC_X_COM_SUPPORT_EXT. Any CMC implementation that supports
extensions must support this extension. For more information on this extension, see
the see the common extensions section of the extensions appendix in this
document.

RESULTS

Session (Session Id)

Opaque session handle that represents a session with the CMC service.

Logon Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results
from the service will be available in the extension. See the extensions structure for
more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one
of the values listed under ERRORS below.

ERRORS
CMC_E_COUNTED_STRING_UNSUPPORTED

CMC_E_INSUFFICIENT_MEMORY

CMC_E_FAILURE

CMC_E_INVALID _CONFIGURATION

CMC_E_INVALID _ENUM

CMC_E_INVALID _FLAG

CMC_E_INVALID _PARAMETER

CMC_E_INVALID _UI_ID

CMC_E_LOGON_FAILURE

CMC_E_PASSWORD_REQUIRED

CMC_E_SERVICE_UNAVAILABLE

CMC_E_UNSUPPORTED_CHARACTER_SET

CMC_E_UNSUPPORTED_FLAG

CMC_E_UNSUPPORTED_FUNCTION_EXT

CMC_E_UNSUPPORTED_VERSION

Common Messaging Call API Page: 55

4.4.4. Query Configuration

NAME

Query Configuration - Determine information about the installed CMC configuration.

SYNOPSIS

#include <xcmc.h>

CMC_return_code
cmc_query_configuration(

CMC_session_idsession,
CMC_enum item,
CMC_buffer reference,
CMC_extension *config_extensions

);

DESCRIPTION

This function queries the underlying implementation's configuration, and returns the information
requested about it, allocating memory when necessary.

Note that the configuration may not be changed through CMC, and that any underlying
configuration file format is implementation dependent.

ARGUMENTS

Session (Session Id)

Opaque session handle which represents a session with the messaging service.

Session handles are created by a logon function call and invalidated with a logoff
function call.

Session may be NULL to indicate that there is no session and that session
independent information should be returned. This will provide default logon
information.

If this value is set to a valid Session Id, session dependent configuration
information will be returned.

If the session handle is invalid, then the error CMC_E_INVALID _SESSION_ID is
returned.

Item (Enum)

This argument indicates which configuration information should be returned. The
possible values include:

Page: 56 Common Messaging Call API

CMC_CONFIG_CHARACTER_SET
CMC_CONFIG_LINE_TERM
CMC_CONFIG_DEFAULT_SERVICE
CMC_CONFIG_DEFAULT_USER
CMC_CONFIG_REQ_PASSWORD
CMC_CONFIG_REQ_SERVICE
CMC_CONFIG_REQ_USER
CMC_CONFIG_UI_AVAIL
CMC_CONFIG_SUP_NOMKMSGREAD
CMC_CONFIG_SUP_COUNTED_STR
CMC_CONFIG_VER_IMPLEM
CMC_CONFIG_VER_SPEC

CMC_CONFIG_CHARACTER_SET - The reference argument should be a
pointer to a CMC_object_identifier array. A pointer to the array of character set
object identifier strings for the implementation will be returned here. The array
will be terminated with a NULL CMC_Object_Identifier. The first character set
Object ID in the array is the default character set used if the caller does not specify
one explicitly. The Platform Specific chapter in the appendix contains the Object
ID values defined for common character sets. This pointer to the array should be
freed using cmc_free(). This Object ID is used by the caller at logon to specify to
the implementation to use a different character set than the default.

CMC_CONFIG_LINE_TERM - The reference argument should be a pointer to a
CMC_enum variable, which will be set to a value of CMC_LINE_TERM_CRLF
if the line delimiter is a carriage return followed by a line feed,
CMC_LINE_TERM_LF if the line delimiter is a line feed, or
CMC_LINE_TERM_CR if the line delimiter is a carriage return.

CMC_CONFIG_DEFAULT_SERVICE - The reference argument should be a
pointer to a CMC_String, into which a pointer to the default service name will be
written, if available, followed by a null character. A pointer value of NULL will
be written if no default service name is available. This pointer should be freed
using cmc_free(). This string, along with the one returned by
CMC_CONFIG_DEFAULT_USER, can be used as defaults when asking the user
for the service name, user name, and password. This will be returned in the
implementation default character set.

CMC_CONFIG_DEFAULT_USER - The reference argument should be a pointer
to a CMC_String, into which a pointer to the default user name will be written, if
available, followed by a null character. A pointer value of NULL will be written
if no default user name is available. This pointer should be freed using
cmc_free(). This string, along with the one returned by
CMC_CONFIG_DEFAULT_SERVICE, can be used as defaults when asking the
user for the provider name, user name, and password. This will be returned in the
implementation default character set.

CMC_CONFIG_REQ_PASSWORD - The reference argument should be a pointer
to a CMC_enum variable, which will be set to a value of CMC_REQUIRED_NO
if the password is not required to logon, CMC_REQUIRED_OPT if the password
is optional to logon, or CMC_REQUIRED_YES if the password is required to
logon.

Common Messaging Call API Page: 57

CMC_CONFIG_REQ_SERVICE - The reference argument should be a pointer to
a CMC_enum variable, which will be set to a value of CMC_REQUIRED_NO if
the service name is not required to logon, CMC_REQUIRED_OPT if the service
name is optional to logon, or CMC_REQUIRED_YES if the service name is
required to logon.

CMC_CONFIG_REQ_USER - The reference argument should be a pointer to a
CMC_enum variable, which will be set to a value of CMC_REQUIRED_NO if the
user name is not required to logon, CMC_REQUIRED_OPT if the user name is
optional to logon, or CMC_REQUIRED_YES if the user name is required to
logon.

CMC_CONFIG_UI_AVAIL - The reference argument should be a pointer to a
CMC_boolean variable, which will be set to a true value if there is UI provided by
the CMC implementation.

CMC_CONFIG_SUP_NOMKMSGREAD - The reference argument should be a
pointer to a CMC_boolean variable, which will be set to a true value if the
CMC_DO_NOT_MARK_AS_READ flag is supported by cmc_read().

CMC_CONFIG_SUP_COUNTED_STR - The reference argument should be a
pointer to a CMC_boolean variable, which will be set to a true value if the
CMC_COUNTED_STRING_TYPE flag is supported during log on.

CMC_CONFIG_VER_IMPLEM - The reference argument should be a pointer to
a CMC_uint16 variable, which will be set to the version number for the
implementation, multiplied by 100. For example, version 1.01 will return 101.

CMC_CONFIG_VER_SPEC - The reference argument should be a pointer to a
CMC_uint16 variable, which will be set to the CMC specification version number
for the implementation, multiplied by 100. For example, version 1.00 will return
100.

Config Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array
may contain both input extensions for providing additional information to the
function and output extensions for receiving information from the function. A
value of NULL indicates that the caller is not using any extensions. See the
extensions structure for more information.

Through extensions, the application can find out which extensions are available.
The extension to do this is CMC_X_COM_SUPPORT_EXT. Any CMC
implementation that supports extensions must support this extension. For more
information on this extension, see the common extensions section of the extensions
appendix in this document

RESULTS

Reference (Buffer)

This argument points to the buffer in which to receive the configuration
information. The number of bytes implied by the item parameter value must be

Page: 58 Common Messaging Call API

owned by the caller and modifiable. The type of the variable or buffer depends on
the item argument.

Config Extensions (Extension)

If output extensions were passed to the function in the extensions list, the results
from the service will be available in the extension. See the extensions structure for
more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one
of the values listed under ERRORS below.

ERRORS
CMC_E_FAILURE

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID _ENUM

CMC_E_INVALID _PARAMETER

CMC_E_NOT_SUPPORTED

CMC_E_UNSUPPORTED_FUNCTION_EXT

Common Messaging Call API Page: 59

4.4.5. COBOL Memory Cell Read

NAME

COBOL Memory Cell Read - Move data from memory to COBOL WORKING-STORAGE.

SYNOPSIS

#include <xcmc.h>

CMC_sint16
cmc_cobol_cell_read(

CMC_sint32 cell_address,
CMC_buffer cobol_data,
CMC_sint16 max_length,
CMC_boolean binary_data

);

DESCRIPTION

This function allows a COBOL program to get data that has been stored in a block of memory
allocated by the malloc() call. The COBOL program will pass the pointer address in cell_address, the
pointer to a WORKING-STORAGE area in cobol_data, the maximum length of bytes to be returned
in max_length, and CMC_true in binary_data if the move is not to be terminated by encountering a
NULL character. If binary_data is set to CMC_true, maxlength bytes will always be returned.
Otherwise, data transfer will stop when a NULL is encountered, with space padding if max_length
has not been reached..

ARGUMENTS

cell_address (sint32)

Pointer to a memory cell returned by the malloc() call..

Some CMC calls (cmc_query_configuration for one) return memory cells allocated
by malloc(). These cells are not directly addressable by HP COBOL programs. This
parameter is the 32-bit address that was returned to the COBOL program.

max_length(sint16)

The maximum number of bytes to be transferred in non-BINARY mode, or the
exact number of bytes to be transferred in ASCII mode.

binary_data(Boolean)

A true/false value indicating if the data is to be treated as BINARY.

Page: 60 Common Messaging Call API

If true, the procedure will move exactly max_length bytes. Otherwise, it will move
bytes until a NULL is found, or max_length bytes have been moved. If the data is
not BINARY, and a NULL is found before max_length bytes have been moved, the
remaining area of cobol_data will be padded with spaces.

RESULTS

cobol_data(Buffer)

Pointer to an area of WORKING-STORAGE.

This function does no type or bounds checking, so it is up to the caller to ensure
that there is sufficient room for the data requested.

bytes_transferred (sint16)

This is the number of bytes that were transferred. In BINARY mode, this is always
the same as max_length, but in non-BINARY mode, is the number of bytes moved
before a NULL was encountered. The remainder of the cobol_data buffer will be
padded with spaces.

ERRORS
NONE

Common Messaging Call API Page: 61

4.5. Return Codes

This section defines the return codes of the CMC interface. The return codes of the generic interface are
specified here; the return codes of the C interface are specified in section 4.6 C Declaration Summary.
Table 4-2 lists the generic return codes and the functions to which the return codes pertain. Following the
table, each return code is defined.

The CMC implementation should only return the values that pertain to a specific function if possible. If
necessary the implementation may return other errors in the error list that are not specifically assigned to a
function. It is not recommended that errors not in the list below be returned.

Return Code Act Free List Logoff Logon Query Read Look Send SndDoc
CMC_E_AMBIGUOUS_RECIPIENT - - - - - - - x - -
CMC_E_ATTACHMENT_NOT_FOUND - - - - - - - - x x
CMC_E_ATTACHMENT_OPEN_FAILURE - - - - - - x - x x
CMC_E_ATTACHMENT_READ_FAILURE - - - - - - x - x x
CMC_E_ATTACHMENT_WRITE_FAILURE - - - - - - x - x x
CMC_E_COUNTED_STRING_UNSUPPORTED - - - - x - - - - -
CMC_E_DISK_FULL - - - - - - x - - -
CMC_E_FAILURE x x x x x x x x x x
CMC_E_INSUFFICIENT_MEMORY x - x x x x x x x x
CMC_E_INVALID _CONFIGURATION - - - - x - - - - -
CMC_E_INVALID _ENUM x - - - x x - - - -
CMC_E_INVALID _FLAG x - x x x - x x x -
CMC_E_INVALID _MEMORY - x - - - - - - - -
CMC_E_INVALID _MESSAGE_PARAMETER - - - - - - - - x -
CMC_E_INVALID _MESSAGE_REFERENCE x - x - - - x - - -
CMC_E_INVALID _PARAMETER x x x x x x x x x x
CMC_E_INVALID _SESSION_ID x - x x - - x - - -
CMC_E_INVALID _UI_ID x - x x x - x x x x
CMC_E_LOGON_FAILURE - - - - x - - x x x
CMC_E_MESSAGE_IN_USE x - - - - - - - - -
CMC_E_NOT_SUPPORTED - - - - - x - x - -
CMC_E_PASSWORD_REQUIRED - - - - x - - - - -
CMC_E_RECIPIENT_NOT_FOUND - - - - - - - x x x
CMC_E_SERVICE_UNAVAILABLE - - - - x - - - - -
CMC_E_TEXT_TOO_LARGE - - - - - - - - x x
CMC_E_TOO_MANY _FILES - - - - - - x - x x
CMC_E_TOO_MANY _RECIPIENTS - - - - - - - - x x
CMC_E_UNABLE_TO_NOT_MARK_READ - - - - - - x - - -
CMC_E_UNRECOGNIZED_MESSAGE_TYPE - - x - - - - - - -
CMC_E_UNSUPPORTED_ACTION x - - - - - - - - -
CMC_E_UNSUPPORTED_CHARACTER_SET - - - - x - - - - -
CMC_E_UNSUPPORTED_DATA_EXT - - - - - - - x x -
CMC_E_UNSUPPORTED_FLAG x - x x x - x x x -
CMC_E_UNSUPPORTED_FUNCTION_EXT x - x x x x x x x -
CMC_E_UNSUPPORTED_VERSION - - - - x - - - - -
CMC_E_USER_CANCEL - - - - - - - x x x
CMC_E_USER_NOT_LOGGED_ON - - - x - - - x x x

Table 4-2: CMC Interface Return Codes

The return codes are defined as follows:

Page: 62 Common Messaging Call API

CMC_E_AMBIGUOUS_RECIPIENT The recipient name is ambiguous; multiple matches have been
found.

CMC_E_ATTACHMENT_NOT_FOUND The specified attachment was not found as specified.

CMC_E_ATTACHMENT_OPEN_FAILURE The specified attachment was found but could not be opened,
or the attachment file could not be created.

CMC_E_ATTACHMENT_READ_FAILURE The specified attachment was found and opened, but there was
an error reading it.

CMC_E_ATTACHMENT_WRITE_FAILURE The attachment file was created successfully, but there was an
error writing it.

CMC_E_COUNTED_STRING_UNSUPPORTED This implementation does not support the counted string type.

CMC_E_DISK_FULL Insufficient disk space was available to complete the
requested operation (this may refer to local or shared disk
space).

CMC_E_FAILURE There was a general failure which does not fit the description
of any other error code.

CMC_E_INSUFFICIENT_MEMORY Insufficient memory was available to complete the requested
operation.

CMC_E_INVALID _CONFIGURATION The underlying messaging service's configuration is invalid,
so logging on cannot be completed.

CMC_E_INVALID _ENUM A CMC_enum value is invalid.

CMC_E_INVALID _FLAG A flag value in the flags parameter was invalid.

CMC_E_INVALID _MEMORY Memory pointer passed is invalid.

CMC_E_INVALID _MESSAGE_PARAMETER One of the parameters in the message was invalid.

CMC_E_INVALID _MESSAGE_REFERENCE The specified message reference is invalid or no longer valid
(e.g., it has been deleted).

CMC_E_INVALID _PARAMETER A function parameter was invalid.

CMC_E_INVALID _SESSION_ID The specified session id is invalid or no longer valid (e.g.,
after logging off).

CMC_E_INVALID _UI_ID The specified user interface id is invalid or no longer valid.

CMC_E_LOGON_FAILURE The service, user name, and/or password specified were
invalid, so logging on cannot be completed.

CMC_E_MESSAGE_IN_USE The requested action cannot be completed at this time because
the message is in use.

CMC_E_NOT_SUPPORTED The operation requested is not supported by this
implementation.

CMC_E_PASSWORD_REQUIRED A password is required on this messaging service.

CMC_E_RECIPIENT_NOT_FOUND One or more of the specified recipients were not found.

CMC_E_SERVICE_UNAVAILABLE The service requested is unavailable.

CMC_E_TEXT_TOO_LARGE The size of the text string passed to the implementation is too
large.

Common Messaging Call API Page: 63

CMC_E_TOO_MANY _FILES The implementation cannot support the number of files
specified.

CMC_E_TOO_MANY _RECIPIENTS The implementation cannot support the number of recipients
specified.

CMC_E_UNABLE_TO_NOT_MARK_READ CMC_DO_NOT_MARK_AS_READ flag cannot be
supported.

CMC_E_UNRECOGNIZED_MESSAGE_TYPE The specified message type is not supported by this
implementation.

CMC_E_UNSUPPORTED_ACTION The requested action is not supported by this implementation.

CMC_E_UNSUPPORTED_CHARACTER_SET The character set requested is not supported.

CMC_E_UNSUPPORTED_DATA_EXT The data extension requested is not supported.

CMC_E_UNSUPPORTED_FLAG The flag requested is not supported.

CMC_E_UNSUPPORTED_FUNCTION_EXT The function extension requested is not supported.

CMC_E_UNSUPPORTED_VERSION The version specified in the call cannot be supported by this
CMC implementation.

CMC_E_USER_CANCEL The operation was canceled by the user.

CMC_E_USER_NOT_LOGGED_ON The user is not logged on and the
CMC_LOGON_UI_ALLOWED flag is not set.

Page: 64 Common Messaging Call API

4.6. C Declaration Summary

This section lists the declarations that define the CMC interface for the C programming language. All of
the declarations, except those for symbolic constants, also appear in Chapter 3, Data Structures or
Section 4.1, Interface Functions.

The declarations assembled here constitute the contents of a header file to be made accessible to
application programmers. The header file is <xcmc.h>. The symbols the declarations define are the only
symbols the service makes visible to the application.

/*BEGIN CMC INTERFACE */

/*BASIC DATA TYPES*/

#ifndef DIFFERENT_PLATFORM
typedef byte CMC_sint8;
typedef int CMC_sint16;
typedef long int CMC_sint32;
typedef unsigned int CMC_uint16;
typedef unsigned long int CMC_uint32;
typedef void * CMC_buffer;
typedef char * CMC_string;
typedef CMC_uint32 CMC_session_id;
typedef CMC_uint32 CMC_ui_id;
#endif

typedef CMC_uint16 CMC_boolean;
typedef CMC_sint32 CMC_enum;
typedef CMC_uint32 CMC_return_code;
typedef CMC_uint32 CMC_flags;
typedef CMC_string CMC_object_identifier;

#define CMC_FALSE ((CMC_boolean)0)
#define CMC_TRUE ((CMC_boolean)1)

/*DATA STRUCTURES*/

/*ATTACHMENT*/
typedef struct {

CMC_string attach_title;
CMC_object_identifier attach_type;
CMC_string attach_filename;
CMC_flags attach_flags;
CMC_extension *attach_extensions;

} CMC_attachment;

/* ATTACHMENT FLAGS */
#define CMC_ATT_APP_OWNS_FILE ((CMC_flags) 1)
#define CMC_ATT_LAST_ELEMENT ((CMC_flags) 0x80000000)

Common Messaging Call API Page: 65

/* ATTACHMENT OBJECT IDS */
#define CMC_ATT_OID_BINARY "1 2 840 113658 1 1"
#define CMC_ATT_OID_TEXT "1 2 840 113658 1 1 0"

/*COUNTED STRING*/
typedef struct {

CMC_uint32 length;
char string[1];

} CMC_counted_string;

/*EXTENSION*/
typedef struct {

CMC_uint32 item_code;
CMC_uint32 item_data;
CMC_buffer item_reference;
CMC_flags extension_flags;

} CMC_extension;

/* EXTENSION FLAGS */
#define CMC_EXT_REQUIRED ((CMC_flags) 0x00010000)
#define CMC_EXT_OUTPUT ((CMC_flags) 0x00020000)
#define CMC_EXT_LAST_ELEMENT ((CMC_flags) 0x80000000)
#define CMC_EXT_RSV_FLAG_MASK ((CMC_flags) 0xFFFF0000)
#define CMC_EXT_ITEM_FLAG_MASK ((CMC_flags) 0x0000FFFF)

/*MESSAGE*/
typedef struct {

CMC_message_reference *message_reference;
CMC_string message_type;
CMC_string subject;
CMC_time time_sent;
CMC_string text_note;
CMC_recipient *recipients;
CMC_attachment *attachments;
CMC_flags message_flags;
CMC_extension *message_extensions;

} CMC_message;

/* MESSAGE FLAGS */
#define CMC_MSG_READ ((CMC_flags) 1)
#define CMC_MSG_TEXT_NOTE_AS_FILE ((CMC_flags) 2)
#define CMC_MSG_UNSENT ((CMC_flags) 4)
#define CMC_MSG_LAST_ELEMENT ((CMC_flags) 0x80000000)

/*MESSAGE REFERENCE*/
typedef CMC_counted_string CMC_message_reference;

/*MESSAGE SUMMARY*/
typedef struct {

CMC_message_reference *message_reference;
CMC_string message_type;
CMC_string subject;
CMC_time time_sent;

Page: 66 Common Messaging Call API

CMC_uint32 byte_length;
CMC_recipient *originator;
CMC_flags summary_flags;
CMC_extension *message_summary_extensions;

} CMC_message_summary;

/* MESSAGE SUMMARY FLAGS */
#define CMC_SUM_READ ((CMC_flags) 1)
#define CMC_SUM_UNSENT ((CMC_flags) 2)
#define CMC_SUM_LAST_ELEMENT ((CMC_flags) 0x80000000)

/*RECIPIENT*/
typedef struct {

CMC_string name;
CMC_enum name_type;
CMC_string address;
CMC_enum role;
CMC_flags recip_flags;
CMC_extension *recip_extensions;

} CMC_recipient;

/* NAME TYPES */
#define CMC_TYPE_UNKNOWN ((CMC_enum) 0)
#define CMC_TYPE_INDIVIDUAL ((CMC_enum) 1)
#define CMC_TYPE_GROUP ((CMC_enum) 2)

/* ROLES */
#define CMC_ROLE_TO ((CMC_enum) 0)
#define CMC_ROLE_CC ((CMC_enum) 1)
#define CMC_ROLE_BCC ((CMC_enum) 2)
#define CMC_ROLE_ORIGINATOR ((CMC_enum) 3)
#define CMC_ROLE_AUTHORIZING_USER ((CMC_enum) 4)

/* RECIPIENT FLAGS */
#define CMC_RECIP_IGNORE ((CMC_flags) 1)
#define CMC_RECIP_LIST_TRUNCATED ((CMC_flags) 2)
#define CMC_RECIP_LAST_ELEMENT ((CMC_flags) 0x80000000)

/*TIME*/
typedef struct{

CMC_sint8 second;
CMC_sint8 minute;
CMC_sint8 hour;
CMC_sint8 day;
CMC_sint8 month;
CMC_sint8 year;
CMC_sint8 isdst;
CMC_sint16 tmzone;

}CMC_time;

/* TIME FLAGS */
#define CMC_NO_TIMEZONE ((CMC_flags) 0x8000)

Common Messaging Call API Page: 67

/*CMC FUNCTIONS */

/*CROSS FUNCTION FLAGS */
#define CMC_ERROR_UI_ALLOWED ((CMC_flags) 0x01000000)
#define CMC_LOGON_UI_ALLOWED ((CMC_flags) 0x02000000)
#define CMC_COUNTED_STRING_TYPE ((CMC_flags) 0x04000000)

/*SEND*/
CMC_return_code
cmc_send(

CMC_session_id session,
CMC_message *message,
CMC_flags send_flags,
CMC_ui_id ui_id,
CMC_extension *send_extensions

);

#define CMC_SEND_UI_REQUESTED ((CMC_flags) 1)

/*SEND DOCUMENTS*/
CMC_return_code
cmc_send_documents(

CMC_string recipient_addresses,
CMC_string subject,
CMC_string text_note,
CMC_flags send_doc_flags,
CMC_string file_paths,
CMC_string attach_titles,
CMC_string delimiter,
CMC_ui_id ui_id,

);

#define CMC_FIRST_ATTACH_AS_TEXT_NOTE ((CMC_flags) 2)

/*ACT ON*/
CMC_return_code
cmc_act_on(

CMC_session_id session,
CMC_message_reference *message_reference,
CMC_enum operation,
CMC_flags act_on_flags,
CMC_ui_id ui_id,
CMC_extension *act_on_extensions

);

#define CMC_ACT_ON_EXTENDED ((CMC_enum) 0)
#define CMC_ACT_ON_DELETE ((CMC_enum) 1)

/*LIST*/
CMC_return_code
cmc_list(

CMC_session_id session,

Page: 68 Common Messaging Call API

CMC_string message_type,
CMC_flags list_flags,
CMC_message_reference *seed,
CMC_uint32 *count,
CMC_ui_id ui_id,
CMC_message_summary **result,
CMC_extension *list_extensions

);

#define CMC_LIST_UNREAD_ONLY ((CMC_flags) 1)
#define CMC_LIST_MSG_REFS_ONLY ((CMC_flags) 2)
#define CMC_LIST_COUNT_ONLY ((CMC_flags) 4)

#define CMC_LENGTH_UNKNOWN 0xFFFFFFFF

/*READ*/
CMC_return_code
cmc_read(

CMC_session_id session,
CMC_message_reference *message_reference,
CMC_flags read_flags,
CMC_message **message,
CMC_ui_id ui_id,
CMC_extension *read_extensions

);

#define CMC_DO_NOT_MARK_AS_READ ((CMC_flags) 1)
#define CMC_MSG_AND_ATT_HDRS_ONLY ((CMC_flags) 2)
#define CMC_READ_FIRST_UNREAD_MESSAGE ((CMC_flags) 4)

/*LOOK UP*/
CMC_return_code
cmc_look_up(

CMC_session_id session,
CMC_recipient *recipient_in,
CMC_flags look_up_flags,
CMC_ui_id ui_id,
CMC_uint32 *count,
CMC_recipient **recipient_out,
CMC_extension *look_up_extensions

);

#define CMC_LOOKUP_RESOLVE_PREFIX_SEARCH ((CMC_flags) 1)
#define CMC_LOOKUP_RESOLVE_IDENTITY ((CMC_flags) 2)
#define CMC_LOOKUP_RESOLVE_UI ((CMC_flags) 4)
#define CMC_LOOKUP_DETAILS_UI ((CMC_flags) 8)
#define CMC_LOOKUP_ADDRESSING_UI ((CMC_flags) 16)

/*FREE*/
CMC_return_code

Common Messaging Call API Page: 69

cmc_free(
CMC_buffer memory

);

/* LOGOFF */
CMC_return_code
cmc_logoff(

CMC_session_id session,
CMC_ui_id ui_id,
CMC_flags logoff_flags,
CMC_extension *logoff_extensions

);

#define CMC_LOGOFF_UI_ALLOWED ((CMC_flags) 1)

/* LOGON */
CMC_return_code
cmc_logon(

CMC_string service,
CMC_string user,
CMC_string password,
CMC_object_identifier character_set,
CMC_ui_id ui_id,
CMC_uint16 caller_cmc_version,
CMC_flags logon_flags,
CMC_session_id *session,
CMC_extension *logon_extensions

);

#define CMC_VERSION ((CMC_uint16) 100)

/* QUERY CONFIGURATION */
CMC_return_code
cmc_query_configuration(

CMC_session_id session,
CMC_enum item,
CMC_buffer reference,
CMC_extension *config_extensions

);

#define CMC_CONFIG_CHARACTER_SET ((CMC_enum) 1)
#define CMC_CONFIG_LINE_TERM ((CMC_enum) 2)
#define CMC_CONFIG_DEFAULT_SERVICE ((CMC_enum) 3)
#define CMC_CONFIG_DEFAULT_USER ((CMC_enum) 4)
#define CMC_CONFIG_REQ_PASSWORD ((CMC_enum) 5)
#define CMC_CONFIG_REQ_SERVICE ((CMC_enum) 6)
#define CMC_CONFIG_REQ_USER ((CMC_enum) 7)
#define CMC_CONFIG_UI_AVAIL ((CMC_enum) 8)
#define CMC_CONFIG_SUP_NOMKMSGREAD ((CMC_enum) 9)
#define CMC_CONFIG_SUP_COUNTED_STR ((CMC_enum) 10)
#define CMC_CONFIG_VER_IMPLEM ((CMC_enum) 11)
#define CMC_CONFIG_VER_SPEC ((CMC_enum) 12)

Page: 70 Common Messaging Call API

/* CONFIG LINE TERM ENUM */
#define CMC_LINE_TERM_CRLF ((CMC_enum) 0)
#define CMC_LINE_TERM_CR ((CMC_enum) 1)
#define CMC_LINE_TERM_LF ((CMC_enum) 2)

/* CONFIG REQUIRED LOGON PARAMETER ENUM */
#define CMC_REQUIRED_NO ((CMC_enum) 0)
#define CMC_REQUIRED_YES ((CMC_enum) 1)
#define CMC_REQUIRED_OPT ((CMC_enum) 2)

/* DEFINED OBJECT ID'S FOR CHARACTER SETS */
#define CMC_CHARSET_437 "1 2 840 113658 1 2 437"
#define CMC_CHARSET_850 "1 2 840 113658 1 2 850"
#define CMC_CHARSET_1252 "1 2 840 113658 1 2 1252"
#define CMC_CHARSET_ISTRING "1 2 840 113658 1 3 0"
#define CMC_CHARSET_UNICODE "1 2 840 113658 1 3 1"
#define CMC_CHARSET_T61 "0 0 20 61"
#define CMC_CHARSET_IA5 "0 0 20 50"
#define CMC_CHARSET_ISO_10646 "2 1 0 0 0"
#define CMC_CHARSET_ISO_646 "1 0 646"

/* RETURN CODES FLAGS */
#define CMC_ERROR_UI_DISPLAYED ((CMC_return_code) 0x00008000)
#define CMC_ERROR_RSV_MASK ((CMC_return_code) 0x0000FFFF)
#define CMC_ERROR_IMPL_MASK ((CMC_return_code) 0xFFFF0000)

/* RETURN CODES */
#define CMC_SUCCESS ((CMC_return_code) 0)

#define CMC_E_AMBIGUOUS_RECIPIENT ((CMC_return_code) 1)
#define CMC_E_ATTACHMENT_NOT_FOUND ((CMC_return_code) 2)
#define CMC_E_ATTACHMENT_OPEN_FAILURE ((CMC_return_code) 3)
#define CMC_E_ATTACHMENT_READ_FAILURE ((CMC_return_code) 4)
#define CMC_E_ATTACHMENT_WRITE_FAILURE ((CMC_return_code) 5)
#define CMC_E_COUNTED_STRING_UNSUPPORTED ((CMC_return_code) 6)
#define CMC_E_DISK_FULL ((CMC_return_code) 7)
#define CMC_E_FAILURE ((CMC_return_code) 8)
#define CMC_E_INSUFFICIENT _MEMORY ((CMC_return_code) 9)
#define CMC_E_INVALID _CONFIGURATION ((CMC_return_code) 10)
#define CMC_E_INVALID _ENUM ((CMC_return_code) 11)
#define CMC_E_INVALID _FLAG ((CMC_return_code) 12)
#define CMC_E_INVALID _MEMORY ((CMC_return_code) 13)
#define CMC_E_INVALID _MESSAGE_PARAMETER ((CMC_return_code) 14)
#define CMC_E_INVALID _MESSAGE_REFERENCE ((CMC_return_code) 15)
#define CMC_E_INVALID _PARAMETER ((CMC_return_code) 16)
#define CMC_E_INVALID _SESSION_ID ((CMC_return_code) 17)
#define CMC_E_INVALID _UI _ID ((CMC_return_code) 18)
#define CMC_E_LOGON_FAILURE ((CMC_return_code) 19)
#define CMC_E_MESSAGE_IN _USE ((CMC_return_code) 20)
#define CMC_E_NOT_SUPPORTED ((CMC_return_code) 21)
#define CMC_E_PASSWORD_REQUIRED ((CMC_return_code) 22)
#define CMC_E_RECIPIENT_NOT_FOUND ((CMC_return_code) 23)

Common Messaging Call API Page: 71

#define CMC_E_SERVICE_UNAVAILABLE ((CMC_return_code) 24)
#define CMC_E_TEXT_TOO_LARGE ((CMC_return_code) 25)
#define CMC_E_TOO_MANY_FILES ((CMC_return_code) 26)
#define CMC_E_TOO_MANY_RECIPIENTS ((CMC_return_code) 27)
#define CMC_E_UNABLE_TO_NOT_MARK_READ ((CMC_return_code) 28)
#define CMC_E_UNRECOGNIZED_MESSAGE_TYPE ((CMC_return_code) 29)
#define CMC_E_UNSUPPORTED_ACTION ((CMC_return_code) 30)
#define CMC_E_UNSUPPORTED_CHARACTER_SET ((CMC_return_code) 31)
#define CMC_E_UNSUPPORTED_DATA_EXT ((CMC_return_code) 32)
#define CMC_E_UNSUPPORTED_FLAG ((CMC_return_code) 33)
#define CMC_E_UNSUPPORTED_FUNCTION_EXT ((CMC_return_code) 34)
#define CMC_E_UNSUPPORTED_VERSION ((CMC_return_code) 35)
#define CMC_E_USER_CANCEL ((CMC_return_code) 36)
#define CMC_E_USER_NOT_LOGGED_ON ((CMC_return_code) 37)

Page: 72 Common Messaging Call API

5. Programming Examples

Query Configuration, Logon, and Logoff

/* local variables used */

CMC_return_code Status;
CMC_boolean UI_available;
CMC_session_id Session;

/* find out if UI is available with this implementation before starting
*/

Status = cmc_query_configuration(
 NULL, /* No session handle. */
 CMC_CONFIG_UI_AVAIL, /* See if UI is available. */
 &UI_available, /* Return value. */
 NULL); /* No extensions. */
 /* error handling */

/* Log on to system using UI */

Status = cmc_logon(
 NULL, /* Default service. */
 NULL, /* Prompt for username. */
 NULL, /* Prompt for password. */
 NULL, /* Default Character set. */
 (CMC_ui_id)NULL, /* Default UI ID. */
 CMC_VERSION, /* Version 1 CMC calls. */
 CMC_LOGON_UI_ALLOWED | /* Full logon UI. */
 CMC_ERROR_UI_ALLOWED, /* Use UI to display errors. */
 &Session, /* Returned session id. */
 NULL); /* No extensions. */
 /* error handling */

/* Do various CMC calls */

/* Log off from the implementation */

Status = cmc_logoff(
 Session, /* Session ID. */
 (CMC_ui_id)NULL, /* No UI will be used. */
 0, /* No flags. */
 NULL); /* No extensions. */
 /* error handling */

Send and Send Documents Functions

/* local variables used */

CMC_attachment Attach;
CMC_session_id Session;
CMC_message Message;
CMC_recipient Recip[2];

Common Messaging Call API Page: 73

CMC_return_code Status;

/* Build recipient list with two recipients. Add one "To" recipient.
*/

Recip[0].name = "Bob Weaver"; /* Send to Bob Weaver. */
Recip[0].name_type = CMC_TYPE_INDIVIDUAL;/* Bob's a person. */
Recip[0].address = NULL; /* Look_up Bob's address. */
Recip[0].role = CMC_ROLE_TO; /* He's a "To" recipient. */
Recip[0].flags = 0; /* Not the last element. */
Recip[0].extensions = NULL; /* No recipient extensions.*/

/* Add one "Cc" recipient. */

Recip[1].name = "Mary Yu"; /* Send to Mary Yu. */
Recip[1].name_type = CMC_TYPE_INDIVIDUAL; /* Mary's a person. */
Recip[1].address = NULL; /* Look_up Mary's address. */
Recip[1].role = CMC_ROLE_CC; /* She's a "Cc" recipient. */
Recip[1].flags = CMC_RECIP_LAST_ELEMENT;/* Last recipient element*/
Recip[1].extensions = NULL; /* No recipient extensions.*/

/* Attach a file. */

Attach.attach_title = "stock.wks"; /* Original file name. */
Attach.attach_type = NULL; /* No specific type. */
Attach.attach_filename = "tmp22.tmp"; /* File to attach. */
Attach.attach_flags = CMC_ATT_LAST_ELEMENT; /* Last attachment*/
Attach.attach_extensions = NULL; /* No attach. extensions. */

/* Put it together in the message structure. */

Message.message_reference = NULL; /* Ignored on cmc_send calls. */
Message.message_type = NULL; /* Interpersonal message type. */
Message.subject = "Stock"; /* Message subject. */
Message.time_sent = NULL; /* Ignored on cmc_send calls. */
Message.text_note = "Time to buy"; /* Message note. */
Message.recipients = Recip; /* Message recipients. */
Message.attachments = &Attach; /* Message attachments. */
Message.message_flags = 0; /* No flags. */
Message.message_extensions = NULL; /* No message extensions. */

/* Send the message! */

Status = cmc_send(
 Session, /* Session ID. - set with logon call */
 &Message, /* Message structure. */
 0, /* No flags. */
 (CMC_ui_id)NULL, /* No UI will be used. */
 NULL); /* No extensions. */
 /* error handling */

/* Now do the same thing with the send documents call and UI */

Status = cmc_send_documents(
 "to:Bob Weaver,cc:Mary Yu", /* Message recipients. */
 "Stock", /* Message subject. */
 "Time to buy", /* Message note. */
 CMC_LOGON_UI_ALLOWED |
 CMC_SEND_UI_REQUESTED |
 CMC_ERROR_UI_ALLOWED, /* Flags (allow various UI's).*/

Page: 74 Common Messaging Call API

 "stock.wks", /* File to attach. */
 "tmp22.tmp", /* File name to carry on attach. */
 ",", /* Multi-value delimiter. */
 NULL); /* Default UI ID. */
 /* error handling */

List, read, and delete the first unread message

/* local variables used */

CMC_message_summary *pMsgSummary;
CMC_message *pMessage;
CMC_uint32 iCount;

/* read the first unread message and delete it */

iCount = 5;

Status = cmc_list(
 Session, /* Session handle. */
 NULL, /* List ALL message types. */
 CMC_LIST_UNREAD_ONLY, /* Get only unread messages */
 NULL, /* Starting at the top. */
 &iCount, /* Input/Output message count. */
 (CMC_ui_id)NULL,/* No UI will be used. */
 &pMsgSummary, /* Return message summary list. */
 NULL); /* No extensions. */
 /* error handling */

Status = cmc_read(
 Session, /* Session ID. */
 pMsgSummary[0]->message_reference,/* Message to read. */
 CMC_MSG_AND_ATT_HDRS_ONLY, /* don't get attach files.*/
 &pMessage, /* Returned message. */
 (CMC_ui_id)NULL, /* No UI. */
 NULL); /* No extensions. */
 /* error handling */

Status = cmc_act_on(
 Session, /* Session ID. */
 pMsgSummary[0]->message_reference, /* Message to delete.*/
 CMC_ACT_ON_DELETE, /* Message to read. */
 0, /* no flags */
 (CMC_ui_id)NULL, /* No UI. */
 NULL); /* No extensions. */
 /* error handling */

/* free the memory returned by the implementation */

Status = cmc_free(pMsgSummary);
Status = cmc_free(pMessage);

/* do the same thing without the list call, since the read call can get
 the first unread mail message */

Status = cmc_read(
 Session, /* Session ID. */
 NULL, /* Read the first message. */

Common Messaging Call API Page: 75

 CMC_READ_FIRST_UNREAD_MESSAGE | /* get first unread msg */
 CMC_MSG_AND_ATT_HDRS_ONLY, /* don't get attach files.*/
 &pMessage, /* Returned message. */
 (CMC_ui_id)NULL, /* No UI. */
 NULL); /* No extensions. */
 /* error handling */

Status = cmc_act_on(
 Session, /* Session ID. */
 pMessage->message_reference, /* message to delete */
 CMC_ACT_ON_DELETE, /* Message to read. */
 0, /* no flags */
 (CMC_ui_id)NULL, /* No UI. */
 NULL); /* No extensions. */
 /* error handling */

/* free the memory returned by the implementation */

Status = cmc_free(pMessage);

Look up a specific recipient and get its details

/* local variables used */

CMC_session_id Session;
CMC_recipient *pRecipient;
CMC_recipient Recip;
CMC_return_code Status;

/* look up a name to pick correct recipient */

Recip.name = "Bob Stack"; /* Send to Bob Weaver. */
Recip.name_type = CMC_TYPE_INDIVIDUAL; /* Bob's a person. */
Recip.address = NULL; /* Look_up Bob's address. */
Recip.role = NULL; /* Role not used. */
Recip.recip_flags = 0; /* No flags. */
Recip.recip_extensions = NULL; /* No recipient
extensions.*/

Status = cmc_look_up(
 Session, /* Session handle. */
 &Recip, /* Name to look up. */
 CMC_LOOKUP_RESOLVE_UI | /* Disambiguate using UI. */
 CMC_ERROR_UI_ALLOWED, /* Display errors using UI. */
 (CMC_ui_id)NULL, /* Default UI ID. */
 1, /* Only want 1 back. */
 pRecipient, /* Returned recipient ptr. */
 NULL); /* No extensions. */

/* Display details stored for this recipient */

Status = cmc_look_up(
 Session, /* Session handle. */
 pRecipient, /* Name to get details on. */
 CMC_LOOKUP_DETAILS_UI | /* Show details UI. */
 CMC_ERROR_UI_ALLOWED, /* Display errors using UI. */
 (CMC_ui_id)NULL, /* Default UI ID. */
 0, /* No limit on return count.*/

Page: 76 Common Messaging Call API

 NULL, /* No records returned. */
 NULL); /* No extensions. */

/* free the memory returned by the implementation */

cmc_free(pRecipient);

Use of extensions

/* local variables used */

CMC_return_code Status;
CMC_session_id Session;
CMC_extension Extension;
CMC_X_COM_support Supported[2];
CMC_uint16 index;

/* find out if the common extension set is supported, but I don't need
 COM_X_CONFIG_DATA support */

Supported[0].item_code = CMC_XS_COM;
Supported[0].flags = 0;

Supported[1].item_code = CMC_X_COM_CONFIG_DATA;
Supported[1].flags = CMC_X_COM_SUP_EXCLUDE;

Extension.item_code = CMC_X_COM_SUPPORT_EXT;
Extension.item_data = 2;
Extension.item_reference = Supported;
Extension.extension_flags = CMC_EXT_LAST_ELEMENT;

Status = cmc_query_configuration(
 NULL, /* No session handle. */
 CMC_CONFIG_UI_AVAIL, /* See if UI is available. */
 &UI_available, /* Return value. */
 &Extension); /* Pass in extensions. */
 /* error handling */
if (Supported[0].flags & CMC_X_COM_NOT_SUPPORTED)

return FALSE; /* common extensions I need are not available */

/* Log on to system and get the data extensions for this session */

Supported[0].item_code = CMC_XS_COM;
Supported[0].flags = 0;

Supported[1].item_code = CMC_X_COM_CONFIG_DATA;
Supported[1].flags = CMC_X_COM_SUP_EXCLUDE;

Extension.item_code = CMC_X_COM_SUPPORT_EXT;
Extension.item_data = 2;
Extension.item_reference = Supported;
Extension.extension_flags = CMC_EXT_REQUIRED | CMC_EXT_LAST_ELEMENT;

Status = cmc_logon(
 NULL, /* Default service. */
 NULL, /* Prompt for username. */
 NULL, /* Prompt for password. */
 NULL, /* Default Character set. */
 (CMC_ui_id)NULL, /* Default UI ID. */

Common Messaging Call API Page: 77

 CMC_VERSION, /* Version 1 CMC calls. */
 CMC_LOGON_UI_ALLOWED | /* Full logon UI. */
 CMC_ERROR_UI_ALLOWED, /* Use UI to display errors. */
 &Session, /* Returned session id. */
 &Extension); /* Logon extensions. */
 /* error handling */
if (Supported[0].flags & CMC_X_COM_NOT_SUPPORTED)

return FALSE; /* common extensions I need are not available */
 /* the common data extensions will be used for this session */

/* example of how to free data returned from the CMC implementation in
 function output extensions. */

for (index = 0; ; index++){
 if (Extensions[index].extension_flags & CMC_EXT_OUTPUT) {
 if (cmc_free(Extensions[index].item_reference) != CMC_success){
 /* Handle unexpected error here */
 }
 }
 (Extensions[index].extension_flags & CMC_EXT_LAST_ELEMENT)
 break;
 }

/* Do various CMC calls */

/* Log off from the implementation */

Status = cmc_logoff(
 Session, /* Session ID. */
 (CMC_ui_id)NULL, /* No UI will be used. */
 0, /* No flags. */
 NULL); /* No extensions. */
 /* error handling */

Page: 78 Common Messaging Call API

6. Appendices

Appendix A Extension Registration

A set of common extensions are defined by this specification, and vendor specified extensions may be
defined by any implementor of the CMC API. Further extension sets may also be defined by future
versions of this specification. Because of this, it is important to have a set of guidelines for the naming and
definition of extensions. These guidelines are given below:

1. Extensions item_code ranges will be handed out to vendors or vendor groups in blocks of 256 for
creating extension sets. A vendor/vendor group may get more than one item_code range if necessary
for the extension set. The extension set identifier for all the sets item_code ranges will be the first
location of the first block given out. This extension set identifier is used to query the service for
support of a particular extension set.

For example the extension blocks for Vendor Group X may be 0x00000400, 0x00000900, and
0x00004300 and the extension set identifier would be 0x00000400 if that was the first block assigned
to the vendor. Applications would ask a service if it supports extension set 0x00000400, for this
vendor group's extensions.

2. An extension set will also have a specific prefix assigned to it for use in the names of all extensions in
the extension set. The format of the prefix will be:

 CMC_XS_[vendor id] for the extension set identifier
 CMC_X_[vendor id]_[extension name] for the item codes of extensions in the set

In the example with Vendor Group X above, if its vendor id was CX, it would define its extensions as:
#define CMC_XS_CX 0x00000400
#define CMC_X_CX_EXT1 0x00000401
#define CMC_X_CX_EXT2 0x00000402
.....

3. Extension sets defined by this specification will be allocated an extension set number and prefix from
the X.400 API Association. Implementors may also obtain an extension set prefix, and a block of
extension codes, from the X.400 API Association by requesting such a number in writing. Pre-defined
extension set numbers are given in Appendix D. Support for different extension sets is indicated
through the configuration of the CMC implementation and can be queried through the function
cmc_query_configuration() using the CMC_X_COM_SUPPORT_EXT extension.

4. An extension set value of BILATERAL has also been allocated. Extensions may be defined within the
BILATERAL set by any implementor. No registration of a extension set number is required. This set
is provided so that implementors may define extensions without any formal registration. Because of
this freedom, extensions from different vendors may conflict and inhibit application portability and the
co-residency of different CMC implementations. The prefix for these extensions will be
CMC_X_BLT_ and the corresponding set identifier is CMC_XS_BLT.

Common Messaging Call API Page: 79

To minimize portability issues, implementors are encouraged to specify extensions as generically as
possible, and to contribute these extensions as proposed additions to the CMC-defined extension set.
Through this process, the CMC API set will evolve in a positive direction in a manner which continues to
maximize portability.

Page: 80 Common Messaging Call API

Appendix B Common Extension Set

The Common Messaging Calls common extension set contains those function and data extensions that are
common to most mail services, but are not in the base specification for various reasons. After the
documentation for all of the extensions, a C declaration section is provided as the basis of a header file for
this extension set. This section should be used as a model for creation of other extension sets.
Explanations of extensions and extensions structures are provided in sections 2.5 and 3.7.

CMC_XS_COM

This extension identifier is used to represent all the extensions in the common extension set.

This identifier should be used with the CMC_X_COM_SUPPORT_EXT extension (described below) on
cmc_query_configuration() and cmc_logon() to determine support for the common extension set. By
asking the implemtation if it supports the entire common extension set, the application does not need to
individually request all the extensions it might be interested in. If used during cmc_logon() it will also
indicate data extensions that should be attached to the structures for this session (as described below). The
implementation should return the support level based on the description in the
CMC_X_COM_SUPPORT_EXT extension.

FUNCTION EXTENSIONS

CMC_X_COM_SUPPORT_EXT

Description:
This extension is used by client applications to query the CMC implementation about
which extensions it supports. This can be used before a session is established to get
preliminary information about support before logging on. When this extension is used
with cmc_logon() this extension will also indicate which data extensions the client wants
added to the data structures for the session.

Note that some implementations may support different extensions based on what service
the client application creates a session with, so using this extension at logon time is
recommended to verify extension support.

If any extensions are supported by a CMC implementation, this extension must be
supported.

Used by:
cmc_query_config()
cmc_logon().

Input

extension_flags
All CMC flags are valid. No further flags are defined.

item_data
count of items in array pointed to by item_reference.

Common Messaging Call API Page: 81

item_reference
Pointer to first element in array of structures listing extensions the application requests
be supported by the implementation. The C declaration for this structure is below:

typedef struct {
CMC_uint32 item_code;
CMC_flags flags;

} CMC_X_COM_support;

The item_code in the structure is set to the item code of the extension the application
is querying the service about. These can be either extension sets or individual
extensions. An item code of null will be ignored. The flags for the structures that are
used on input are:

CMC_X_COM_SUP_EXCLUDE - exclude this item when deciding whether the
implementation supports an extension set. On logon, do not attach this item to
structures for this session even if other entries request that it be attached. This flag is
used only with extension sets.

Output

extension_flags
unchanged

item_data
unchanged

item_reference
The flags in the structures are set by the implementation to indicate support for the
extension. These flags will not be set if CMC_X_COM_SUP_EXCLUDE was set on
input. The possible values are listed below.

CMC_X_COM_SUPPORTED- the extension for this item_code is supported. If it is
a data extension and is passed at logon, it will be included with the structures used for
this session. For extension sets, the required function and data extensions in the set
are supported.

CMC_X_COM_NOT_SUPPORTED - the item_code is not supported. For extension
sets, not all required function and data extensions for the set are supported. If this is a
data extension or an extension set containing data extensions, the data will not be
attached to structures for this session.

CMC_X_COM_DATA_EXT_SUPPORTED - for extension sets only. This can be
returned by the implementation to indicate that all the required data extensions for the
set are supported, but not all of the required function extensions. As with
CMC_X_COM_SUPPORTED, if this is returned on the logon call, the data
extensions will be included with the data structures for this session.

CMC_X_COM_FUNC_EXT_SUPPORTED - for extension sets only. This can be
returned by the implementation to indicate that all the required function extensions for
the set are supported, but not all of the required data extensions. Unlike
CMC_X_COM_SUPPORTED, if this is returned on the cmc_logon() call, the data
extensions available will NOT be included with the data structures for this session and
will need to be requested explicitly.

Page: 82 Common Messaging Call API

CMC_X_COM_CONFIG_DATA

Description:
Get all values available with cmc_query_configuration() in a structure.

Used by:
cmc_query_config()

Input

extension_flags
All CMC flags are valid. No further flags are defined.

item_data
zero

item_reference
NULL

Output

extension_flags
CMC_EXT_OUTPUT will be set if a structure is successfully returned.

item_data
unchanged

item_reference
Pointer to a structure containing all the information available form the query
configuration call. The C declaration for this structure is below:

typedef struct {
CMC_uint16 ver_spec;
CMC_uint16 ver_implem;
CMC_object_identifier *character_set;
CMC_enum line_term;
CMC_string default_service;
CMC_string default_user;
CMC_enum req_password;
CMC_enum req_service;
CMC_enum req_user;
CMC_boolean ui_avail;
CMC_boolean sup_nomkmsgread;
CMC_boolean sup_counted_str;

} CMC_X_COM_configuration;

The definitions for each of the structure members corresponds to the data returned via
the reference argument by cmc_query_configuration() for the similarly named value of
the item argument. This structure should be freed with one call to cmc_free().

CMC_X_COM_CAN_SEND_RECIP

Description:
Check if the message service is ready to send to the specified recipient.

Used by:
cmc_look_up()

Common Messaging Call API Page: 83

Input

extension_flags
All CMC flags are valid. No further flags are defined.

item_data
zero

item_reference
NULL

On input, the cmc_look_up() recipient_in parameter will contain the recipient to query the
service about. The extension will only look at the first recipient. if there is more than one
passed.

Output

extension_flags
unchanged

item_data
Set to CMC_X_COM_NOT_READY if a transport is not available for this recipient
type, CMC_X_COM_READY if the recipient can be sent to immediately, and
CMC_X_COM_DEFER if the message will be accepted but deferred until a transport
is ready.

item_reference
unchanged

CMC_X_COM_SAVE_MESSAGE

Description:
Save a message structure to the inbox.

Used by:
cmc_act_on()

Input

extension_flags
Must contain CMC_EXT_REQUIRED to indicate that the save action rather than the
delete action should be carried out. All CMC flags are valid. No further flags are
defined.

item_data
zero

item_reference
Pointer to message structure to save in the inbox. This message will have the
CMC_MSG_UNSENT flag set by the CMC implementation to indicate that it has not
been sent.

On input the cmc_act_on() operation parameter must be set to
CMC_ACT_ON_EXTENDED to indicate that the operation is contained in the
extensions.

Output

Page: 84 Common Messaging Call API

extension_flags
CMC_EXT_OUTPUT will be set if a message is successfully saved and the message
reference returned.

item_data
unchanged

item_reference
Pointer to the message reference referring to the message saved to the inbox. This
pointer must be freed by cmc_free().

CMC_X_COM_SENT_MESSAGE

Description:
Return a message structure containing all the information for the message just sent. This is
useful to obtain information in the message structure set with UI rather than by the calling
application.

Used by:
cmc_send()

Input

extension_flags
All CMC flags are valid. No further flags are defined.

item_data
zero

item_reference
NULL

Output

extension_flags
CMC_EXT_OUTPUT will be set if the item_reference contains a pointer to a
message.

item_data
unchanged

item_reference
Pointer to a message structure containing all the information for the message just sent.
This pointer should be freed with cmc_free().

DATA EXTENSIONS

CMC_X_COM_TIME_RECEIVED

Description:
Data extension for a time structure for the delivery time of the message.

At logon the item code is passed in the CMC_X_COM_SUPPORT_EXT array to indicate
that this data member should be attached to the message and message summary structures
during the session.

Common Messaging Call API Page: 85

Used by:
CMC_message
CMC_message_summary

Input

This extension is ignored on input of message structure

Output

extension_flags
NULL

item_data
zero

item_reference
Pointer to a time structure indicating the receive time for the message. See the
CMC_time structure for more information.

CMC_X_COM_RECIP_ID

Description:
A data extension to add a unique opaque recipient identifier to the recipient structure. This
is provided by the implementation during recipient name resolution and can be used to
avoid further name resolution during send in some services. This is analogous to the
message reference.

At logon the item code is passed in the CMC_X_COM_SUPPORT_EXT array to indicate
that this data member should be attached to the recipient structure during the session.

Used by:
CMC_recipient

Input

extension_flags
All CMC flags are valid. No further flags are defined.

item_data
length of the recipient id

item_reference
pointer to the recipient id

Output

extension_flags
unchanged

item_data
length of the recipient id

item_reference
pointer to the recipient id

CMC_X_COM_ATTACH_CHARPOS

Page: 86 Common Messaging Call API

Description:
Data extension to support display of a graphic representation of the attachment in the
message text note. The extension holds the character position for the representation.

At logon the item code is passed in the CMC_X_COM_SUPPORT_EXT array to indicate
that this data member should be attached to the attachment structure during the session.

Used by:
CMC_attachment

Input

extension_flags
All CMC flags are valid. No further flags are defined.

item_data
Zero-based character offset of the attachment within the text_note data. Note that this
is a character offset rather than a byte offset, which is an important distinction when
multi-byte character sets are in use.

item_reference
NULL

Output

extension_flags
unchanged

item_data
Zero-based character offset of the attachment within the text_note data.

item_reference
unchanged

CMC_X_COM_PRIORITY

Description:
Data extension for message priority.

At logon the item code is passed in the CMC_X_COM_SUPPORT_EXT array to indicate
that this data member should be attached to the message structure during the session.

Used by:
CMC_message
CMC_message_summary

Input

extension_flags
All CMC flags are valid. No further flags are defined.

item_data
Set to CMC_X_COM_URGENT, CMC_X_COM_NORMAL, or
CMC_X_COM_LOW, depending on the urgency of the message.

item_reference
NULL

Common Messaging Call API Page: 87

Output

extension_flags
unchanged

item_data
Set to CMC_X_COM_URGENT, CMC_X_COM_NORMAL, or
CMC_X_COM_LOW, depending on the urgency of the message.

item_reference
unchanged

C Declaration Summary

This section lists the declarations that define the CMC interface for the common extensions set in the C
programming language.

The declarations assembled here constitute the contents of a header file to be made accessible to
application programmers. They are included in the header file <xcmcext.h>. The symbols the
declarations define are the only symbols the service makes visible to the application.

/* COMMON EXTENSIONS DECLARATIONS */

/* EXTENSION SET ID */

#define CMC_XS_COM ((CMC_uint32) 0)

/* FUNCTION EXTENSIONS */

/* Query for extension support in implementation */

#define CMC_X_COM_SUPPORT_EXT ((CMC_uint32) 16)

typedef struct {
CMC_uint32 item_code;
CMC_flags flags;

} CMC_X_COM_support;

#define CMC_X_COM_SUPPORTED ((CMC_flags) 1)
#define CMC_X_COM_NOT_SUPPORTED ((CMC_flags) 2)
#define CMC_X_COM_DATA_EXT_SUPPORTED ((CMC_flags) 4)
#define CMC_X_COM_FUNC_EXT_SUPPORTED ((CMC_flags) 8)
#define CMC_X_COM_SUP_EXCLUDE ((CMC_flags) 16)

/* Get back a structure with configuration data */

#define CMC_X_COM_CONFIG_DATA ((CMC_uint32) 17)

typedef struct {
CMC_uint16 ver_spec;
CMC_uint16 ver_implem;

Page: 88 Common Messaging Call API

CMC_object_identifier character_set;
CMC_enum line_term;
CMC_string default_service;
CMC_string default_user;
CMC_enum req_password;
CMC_enum req_service;
CMC_enum req_user;
CMC_boolean ui_avail;
CMC_boolean sup_nomkmsgread;
CMC_boolean sup_counted_str;

} CMC_X_COM_configuration;

/* Check to see if when a recipient can be sent */

#define CMC_X_COM_CAN_SEND_RECIP ((CMC_uint32) 18)

#define CMC_X_COM_READY ((CMC_enum) 0)
#define CMC_X_COM_NOT_READY ((CMC_enum) 1)
#define CMC_X_COM_DEFER ((CMC_enum) 2)

/* Save a message to the inbox */

#define CMC_X_COM_SAVE_MESSAGE ((CMC_uint32) 19)

/* Get back a message structure for the message just sent */

#define CMC_X_COM_SENT_MESSAGE ((CMC_uint32) 20)

/* DATA EXTENSIONS */

/* attach receive data to message and message summary structures*/

#define CMC_X_COM_TIME_RECEIVED ((CMC_uint32) 128)

/* attach a unique id to resolved recipient structures */

#define CMC_X_COM_RECIP_ID ((CMC_uint32) 129)

/* set character position in the message text to display an icon
 associated with a particular attachment */

#define CMC_X_COM_ATTACH_CHARPOS ((CMC_uint32) 130)

#define CMC_X_COM_PRIORITY ((CMC_uint32) 131)

#define CMC_X_COM_NORMAL ((CMC_enum) 0)
#define CMC_X_COM_LOW ((CMC_enum) 1)
#define CMC_X_COM_URGENT ((CMC_enum) 2)

Common Messaging Call API Page: 89

Other Extension Sets

Other extension sets will be defined by the XAPIA and by vendor groups to support various messaging
protocols. Currently extension sets are being defined for use with the X.400 messaging protocol based on
existing XAPIA interfaces and also for use with G3 facsimile, G3-64 facsimile, G4 facsimile, telex and
Teletex service via the ITU-TS (CCITT) T.611 Recommendation. To find out what extension sets are
available, contact the XAPIA.

Page: 90 Common Messaging Call API

Appendix C Platform Specific Information including
Runtime Bindings

CMC implementors are encouraged to provide run-time binding interfaces to their CMC service
implementations. In general, these interfaces are platform and/or operating system dependent. This
section provides several general requirements and platform-specific requirements for several common
platforms and operating systems.

Unless specified otherwise below, the following definitions apply to all platforms:
byte CMC_sint8
16 bit int CMC_sint16
32 bit long int CMC_sint32
16 bit unsigned int CMC_uint16
32 bit unsigned long int CMC_uint32
32 bit pointer CMC_buffer
32 bit char pointer CMC_string
CMC_uint32 CMC_ui_id
CMC_uint32 CMC_session_id

Explicit and Implicit Binding

All functions in the CMC API should be link-able implicitly and explicitly. Implicit linking builds the
linkage of the application and the CMC service implementation into the application. Explicit linking
requires the application to contain run-time code that links a CMC service implementation.

It is also recommended that all extension functions be loaded explicitly, since their absence on some CMC
implementations would otherwise prevent the application from loading.

Static and dynamic linking mechanisms are defined for several common platforms below.

Apple Macintosh Binding

For static linking, applications should use the Pascal calling convention and 32-bit flat pointers to call an
Apple Macintosh CMC implementation.

For dynamic linking, contact Apple Computer, Inc.

The CMC implementation should always attempt to provide Apple International Strings (ISTRING).

MS-DOS Binding

For static linking, applications should use "far" calls, the C calling convention, and 32-bit segmented "far"
pointers to call an MS-DOS CMC implementation. This is compatible with the Microsoft C "large"
memory model. Any future changes to this mechanism will be published by Microsoft.

The CMC implementation should always attempt to provide code page 437 or 850.

Common Messaging Call API Page: 91

MS-Windows 3.x Binding

For dynamic linking, MS-Windows 3.x CMC implementations should use Dynamic Linked Libraries and
link by name to the CMC functions.

At run time, to determine if a CMC service is available, applications should call GetProfileInt() to look for
the CMC variable in the [MAIL] section of WIN.INI. If this variable is present and non-zero, it indicates
that a CMC.DLL library is available. If the CMC variable is not found or is zero, then the functions cannot
be called. Any future changes to this mechanism will be published by Microsoft.

CMC functions should be called "far", using the Pascal calling convention, and 32-bit segmented "far"
pointers.

CMC structures will be aligned to every 4 byte (32 bit) boundaries. This will not apply to the byte fields in
the time structure or the counted string structure.

The CMC implementation should always attempt to provide code page 1252.

MS-Windows NT Binding

For dynamic linking, MS-Windows NT CMC implementations should use Dynamic Linked Libraries and
link by name to the CMC functions.

At run time, to determine if a CMC service is available, applications should query the registry to see if
CMC is available. The exact mechanism for this will be published by Microsoft.

CMC functions should be called using the STDCALL calling convention.

OS/2 1.x and 2.x 16-bit DLL Binding

For dynamic linking, OS/2 1.x and 2.x 16-bit CMC implementations should use Dynamic Linked Libraries
and link by name to the functions.

At run time, to determine if a CMC service is available, applications should call WinQueryProfileInt() look
for the CMC variable in the [MAIL] section of OS2.INI. The variable will indicate whether the DLL is 16-
bit or 32-bit. If this variable is present and non-zero, it indicates that a CMC.DLL library is available. If
the CMC variable is not found or is zero, then the functions cannot be called. Any future changes to this
mechanism will be published by IBM.

CMC functions should be called "far", using the System calling convention, and 32-bit segmented "far"
pointers.

The CMC implementation should always attempt to provide code page 850.

OS/2 2.0 32-bit DLL Binding

For dynamic linking, OS/2 2.0 32-bit CMC implementations should use Dynamic Linked Libraries and
link by name to the functions.

At run time, to determine if a CMC service is available, applications should WinQueryProfileInt() look for
the CMC variable in the [MAIL] section of OS2.INI. The variable will indicate whether the DLL is 16-bit
or 32-bit. If this variable is present and non-zero, it indicates that a CMC.DLL library is available. If the

Page: 92 Common Messaging Call API

CMC variable is not found or is zero, then the functions cannot be called. Any future changes to this
mechanism will be published by IBM.

CMC functions should be called "far", using the System calling convention, and 32-bit flat "far" pointers.

The CMC implementation should always attempt to provide code page 850.

UNIX SVR4 Binding

For dynamic linking, implementations should comply with the UNIX System V Release 4.0 System V
Application Binary Interface (ABI) specification and link by name to the functions.

At run time, to determine if a CMC service is available, applications should look for the CMC
implementation on the absolute path /usr/lib/XAPI/libCMC.so . The implementation for the
system will be placed in this location. Any future changes to this mechanism will be published by your
UNIX vendor.

CMC functions and structures should use the System calling convention.

The CMC implementation should always attempt to provide code page 850.

MPE/ix Binding

Dynamic linking is not available. The program must be linked using the file CMC.RL.THREEK, and
currently, PH,PM and MR capabilities are required.

Common Messaging Call API Page: 93

Contact Information

3k Associates, Inc.
6901 Old Keene Mill Rd, Suite 500
Springfield, VA 22150
Phone: (703) 569-9189
Fax: (703) 451-3720
E-Mail: Sales@3k.com • Support@3k.com

Office Hours are 9am to 8pm Eastern (U.S.) Time

Page: 94 Common Messaging Call API

Source Code Examples
Source code examples are provided with each installation in the SOURCE group of the THREEK account.
Source files start with "CMC". All source code examples are provided by 3k Associates, Inc and are not
part of the CMC standard specs. For example:

$&&2817 7+5((. *5283 6285&(

),/(1$0(&2'(������������/2*,&$/ 5(&25'�������

6,=(7<3 (2) /,0,7

&0&&(; ��%)$ ��� ���

&0&&2%(; ('7&7 ��%)$ ��� ���

&0&63/(;

��%)$ �� ��

CMCCEX is sample code in "C". CMCCOBEX is in COBOL, and CMCSPLEX is in SPLash!

The sample program in COBOL (CMCCOBEX) that uses various CMC calls:

001000$CONTROL USLINIT
001100 IDENTIFICATION DIVISION.
001200 PROGRAM-ID. COBCMC.
001300 AUTHOR. TOM KIRBY, 3k Associates, Inc.
001400 ENVIRONMENT DIVISION.
001500 CONFIGURATION SECTION.
001600 SOURCE-COMPUTER. HP-3000.
001700 OBJECT-COMPUTER. HP-3000.
001800 DATA DIVISION.
001900 WORKING-STORAGE SECTION.
002000
002100* FIELDS USED BY CMC CALLS
002200
002300* CMC return code
002400 01 RC PIC 9(9) COMP VALUE 0.
002500
002600* CMC session id
002700 01 SID PIC 9(9) COMP VALUE 0.
002800 01 TEMP-ID PIC 9(9) COMP VALUE 0.
002900
003000* CMC message structure
003100 01 MSG.
003200 02 MSG-ENTRY OCCURS 2 TIMES.
003300 03 MESSAGE-REFERENCE PIC S9(9) BINARY VALUE 0.
003400 03 MESSAGE-TYPE PIC S9(9) BINARY VALUE 0.
003500 03 SUBJECT PIC S9(9) BINARY VALUE 0.
003600 03 TIME-SENT.
003700 04 FILLER OCCURS 3 TIMES PIC 9(9) COMP.
003800 03 TEXT-NOTE PIC S9(9) BINARY VALUE 0.
003900 03 RECIPIENTS PIC S9(9) BINARY VALUE 0.
004000 03 ATTACHMENTS PIC S9(9) BINARY VALUE 0.
004100 03 MESSAGE-FLAGS PIC S9(9) BINARY VALUE 0.
004200 03 MESSAGE-EXTENSIONS PIC S9(9) BINARY VALUE 0.
004300

Common Messaging Call API Page: 95

004400* CMC flags parameter
004500 01 FLGS PIC 9(9) COMP VALUE 0.
004600
004700* CMC user interface ID (not used by us)
004800 01 UI-ID PIC 9(9) COMP VALUE 0.
004900
005000* NETMAIL user
005100 01 USER PIC X(17) VALUE SPACES.
005200
005300* NETMAIL user password
005400 01 PASS PIC X(9) VALUE SPACES.
005500
005600* CMC version (must match RL)
005700 01 VERS PIC 9(4) COMP VALUE 0.
005800
005900* CMC attachment structure
006000 01 ATTCH.
006100 02 A-ENTRY OCCURS 10 TIMES.
006200 03 ATTACH-TITLE PIC S9(9) BINARY VALUE 0.
006300 03 ATTACH-TYPE PIC 9(9) COMP VALUE 0.
006400 03 ATTACH-FILENAME PIC S9(9) BINARY VALUE 0.
006500 03 ATTACH-FLAGS PIC 9(9) COMP VALUE 0.
006600 03 ATTACH-EXTENSIONS PIC S9(9) BINARY VALUE 0.
006700
006800* CMC recipient structure
006900 01 RECPT.
007000 02 REC OCCURS 3 TIMES.
007100 03 RNAME PIC S9(9) BINARY.
007200 03 NAME-TYPE PIC S9(9) COMP.
007300 03 RADDRESS PIC S9(9) BINARY.
007400 03 ROLE PIC S9(9) COMP.
007500 03 RECIP-FLAGS PIC 9(9) COMP.
007600 03 RECIP-EXTENSIONS PIC S9(9) BINARY.
007700
007800* Another recipient structure for the second message in the
007900* message structure...
008000 01 RECPT-2.
008100 02 R2NAME PIC S9(9) BINARY.
008200 02 R2NAME-TYPE PIC S9(9) COMP.
008300 02 R2ADDRESS PIC S9(9) BINARY.
008400 02 R2ROLE PIC S9(9) COMP.
008500 02 R2RECIP-FLAGS PIC 9(9) COMP.
008600 02 R2RECIP-EXTENSIONS PIC S9(9) BINARY.
008700
008800* CMC extensions structure (not used)
008900 01 EXTENSIONS PIC S9(9) BINARY VALUE 0.
009000
009100* CMC object identifier (character set), also not used
009200 01 CHARSET PIC S9(9) BINARY VALUE 0.
009300
009400* CMC service (not used)
009500 01 SERVICE PIC S9(9) BINARY VALUE 0.
009600
009700* VARIABLES TO TAKE THE PLACE OF CMC DEFINES

Page: 96 Common Messaging Call API

009800
009900 01 CMC-MSG-TEXT-NOTE-AS-FILE PIC 9(9) COMP VALUE 2.
010000 01 CMC-RECIP-LAST-ELEMENT PIC 9(9) COMP.
010100 01 CMC-MSG-LAST-ELEMENT PIC 9(9) COMP.
010200 01 CMC-ATT-LAST-ELEMENT PIC 9(9) COMP.
010300 01 CMC-TYPE-INDIVIDUAL PIC 9(9) COMP VALUE 1.
010400 01 CMC-ROLE-TO PIC 9(9) COMP VALUE 0.
010500 01 CMC-ROLE-CC PIC 9(9) COMP VALUE 1.
010600 01 CMC-ROLE-BCC PIC 9(9) COMP VALUE 2.
010700 01 CMC-ATT-OID-BINARY.
010800 02 FILLER PIC X(18) VALUE "1 2 840 113658 1 1".
010900 02 FILLER PIC X VALUE %0.
011000 01 CMC-ATT-OID-TEXT.
011100 02 FILLER PIC X(20) VALUE "1 2 840 113658 1 1 0".
011200 02 FILLER PIC X VALUE %0.
011300 01 CMC-CONFIG-CHARACTER-SET PIC 9(9) COMP VALUE 1.
011400 01 CMC-CONFIG-LINE-TERM PIC 9(9) COMP VALUE 2.
011500 01 CMC-CONFIG-DEFAULT-SERVICE PIC 9(9) COMP VALUE 3.
011600 01 CMC-CONFIG-DEFAULT-USER PIC 9(9) COMP VALUE 4.
011700 01 CMC-CONFIG-REQ-PASSWORD PIC 9(9) COMP VALUE 5.
011800 01 CMC-CONFIG-REQ-SERVICE PIC 9(9) COMP VALUE 6.
011900 01 CMC-CONFIG-REQ-USER PIC 9(9) COMP VALUE 7.
012000 01 CMC-CONFIG-UI-AVAIL PIC 9(9) COMP VALUE 8.
012100 01 CMC-CONFIG-SUP-NOMKMSGREAD PIC 9(9) COMP VALUE 9.
012200 01 CMC-CONFIG-SUP-COUNTED-STR PIC 9(9) COMP VALUE 10.
012300 01 CMC-CONFIG-VER-IMPLEM PIC 9(9) COMP VALUE 11.
012400 01 CMC-CONFIG-VER-SPEC PIC 9(9) COMP VALUE 12.
012500 01 CMC-LINE-TERM-CRLF PIC 9(9) COMP VALUE 0.
012600 01 CMC-LINE-TERM-CR PIC 9(9) COMP VALUE 1.
012700 01 CMC-LINE-TERM-LF PIC 9(9) COMP VALUE 2.
012800 01 CMC-REQUIRED-NO PIC 9(9) COMP VALUE 0.
012900 01 CMC-REQUIRED-YES PIC 9(9) COMP VALUE 1.
013000 01 CMC-REQUIRED-OPT PIC 9(9) COMP VALUE 2.
013010 01 CMC-FALSE PIC 9(4) COMP VALUE 0.
013020 01 CMC-TRUE PIC 9(4) COMP VALUE 1.
013100
013200* WORK AREAS
013300
013400 01 II PIC S9(4) COMP VALUE 0.
013500 01 NULL-TERMINATOR PIC X VALUE LOW-VALUE.
013600 01 CARR-RET PIC X VALUE %15.
013700 01 NEWLINE PIC X VALUE %12.
013800 01 PTR1 PIC S9(9) BINARY VALUE 0.
013900 01 PTR2 PIC S9(9) BINARY VALUE 0.
014000 01 M-SUB PIC X(80) VALUE SPACES.
014100 01 A-FILE PIC X(80) VALUE SPACES.
014200 01 B-FILE PIC X(80) VALUE SPACES.
014300 01 NAME-WORK PIC X(30) VALUE SPACES.
014400 01 NAME-AND-ADDRESS.
014500 02 U-NAME OCCURS 3 TIMES PIC X(30).
014600 02 U-ADDR OCCURS 3 TIMES PIC X(80).
014700 01 U2-NAME PIC X(30).
014800 01 U2-ADDR PIC X(80).
014900 01 N-TEXT PIC X(256) VALUE SPACES.

Common Messaging Call API Page: 97

015000 01 BIG-NUM PIC 9(16) COMP VALUE 0.
015100 01 LIL-NUMS REDEFINES BIG-NUM.
015200 02 FILLER PIC 9(9) COMP.
015300 02 LIL-NUM PIC 9(9) COMP.
015400
015500* FIELDS FOR CMC_SEND_DOCUMENTS
015600
015700* These appear in the CALL statement, and hold addresses...
015800 01 SD-ADDRESSES PIC S9(9) BINARY VALUE 0.
015900 01 SD-TEXT PIC S9(9) BINARY VALUE 0.
016000 01 SD-SUBJECT PIC S9(9) BINARY VALUE 0.
016100 01 SD-FILES PIC S9(9) BINARY VALUE 0.
016200 01 SD-FLAGS PIC 9(9) COMP VALUE 0.
016300 01 SD-TITLES PIC S9(9) BINARY VALUE 0.
016400 01 SD-DELIMITER PIC S9(9) BINARY VALUE 0.
016500 01 SD-UI-ID PIC 9(9) COMP VALUE 0.
016600
016700* These are pointed to by the fields in the CALL statement...
016800 01 SDS-ADDRESSES PIC X(256) VALUE SPACES.
016900 01 SDS-TEXT PIC X(256) VALUE SPACES.
017000 01 SDS-SUBJECT PIC X(80) VALUE SPACES.
017100 01 SDS-TITLES PIC X(256) VALUE SPACES.
017200 01 SDS-FILES PIC X(256) VALUE SPACES.
017300 01 SDS-DELIMITER PIC X VALUE ",".
017400
017500* FIELDS FOR CMC_QUERY_CONFIGURATION
017600
017800 01 CMC-ITEM PIC S9(9) COMP VALUE 0.
017900 01 CMC-ENUMVAL PIC S9(9) COMP VALUE 0.
018000 01 CMC-CELL PIC S9(9) BINARY VALUE 0.
018100 01 CMC-CELLPTR PIC S9(9) BINARY VALUE 0.
018200 01 CMC-BOOLEAN PIC 9(4) COMP VALUE 0.
018300 01 CMC-UINT PIC 9(4) COMP VALUE 0.
018400
018500 01 CELL-CONTENTS PIC X(60) VALUE SPACES.
018600 01 CELL-ADDR PIC S9(9) BINARY VALUE 0.
018700
018800 PROCEDURE DIVISION.
018900 XXXX-MAIN.
019000 MOVE LOW-VALUES TO RECPT, RECPT-2, MSG.
019100 MOVE 2147483648 TO BIG-NUM.
019200 MOVE LIL-NUM TO CMC-RECIP-LAST-ELEMENT
019300 CMC-ATT-LAST-ELEMENT
019400 CMC-MSG-LAST-ELEMENT.
019500
019600* 0000, 1000 and 3000 are used for mailing via CMC_SEND, while 2000
019700* is used for the CMC_SEND_DOCUMENTS method (simpler to use, but
019800* higher in overhead costs)...
019900
020000 PERFORM 4000-PRINT-CONFIG THRU 4999-EXIT.
020100
020200* PERFORM 0000-CMCLOGON THRU 0999-EXIT.
020300* PERFORM 1000-CMCSEND-FILE THRU 1999-EXIT.
020400* PERFORM 2000-CMCSENDDOC THRU 2999-EXIT.

Page: 98 Common Messaging Call API

020500* PERFORM 3000-CMCLOGOFF THRU 3999-EXIT.
020600
020700 STOP RUN.
020800
020900 0000-CMCLOGON.
021000* CMCLOGON
021100***
021200* This will not be needed with CMC_send_document, but it is *
021300* needed with CMC_send. *
021400***
021500
021600* UI-ID is not used anyway, set to 0 *
021700 MOVE 0 to UI-ID.
021800
021900* USER must be 16 or less characters, terminated with a \0 *
022000 STRING "MY_USER" NULL-TERMINATOR DELIMITED BY SIZE
022100 INTO USER.
022200* NOTE: If you wish to pass a NULL, you must move 0 to PTR1,
022300* because a string of spaces doth not a true NULL make.
022400* Otherwise, you can skip the PTR1 step and just pass
022500* the variable USER to the CMC routine.
022600*
022700* If you use PTR1, be sure to pass it as \PTR1\, because
022800* its value of 0 is what you really want to pass...
022900* MOVE 0 TO PTR1.
023000
023100* PASS must be 8 characters, terminated with a \0 *
023200 STRING "pAsSwOrD" NULL-TERMINATOR DELIMITED BY SIZE
023300 INTO PASS.
023400* NOTE: If you wish to pass a NULL, you must move 0 to PTR2,
023500* because a string of spaces doth not a true NULL make.
023600* Otherwise, you can skip the PTR2 step and just pass
023700* the variable PASS to the CMC routine.
023800*
023900* If you use PTR2, be sure to pass it as \PTR2\, because
024000* its value of 0 is what you really want to pass...
024100* MOVE 0 TO PTR2.
024200
024300* SERVICE, CHARACTER SET, AND EXTENSIONS ARE NOT USED, PASS NULLS. *
024400
024500* Programmed to specification 1.00 *
024600 MOVE 100 TO VERS.
024700
024800* Pass a 0 in FLGS because we don't support LOGON_UI, ERROR_UI, *
024900* or COUNTED_STRING_TYPE. *
025000 MOVE 0 TO FLGS.
025100
025200* SID is the session ID that must be used in all the other calls. *
025300 CALL "CMC_LOGON" USING \SERVICE\, USER, PASS,
025400 \CHARSET\, \UI-ID\, \VERS\,
025500 \FLGS\, SID, \EXTENSIONS\
025600 GIVING RC.
025700
025800* I am just printing the return, you will probably want to stop *

Common Messaging Call API Page: 99

025900* if you don't get a 0 return... *
026000 DISPLAY "LOGON = " RC.
026100
026200 0999-EXIT.
026300 EXIT.
026400
026500 1000-CMCSEND-FILE.
026600* CMCSEND
026700**
026800* There are two ways of sending a text file. First, there is the *
026900* sending as a file method. Here is how to do this method: *
027000**
027100
027200* FLGS is 0 because we don't support COUNTED_STRING_TYPE or any *
027300* of the UIs... *
027400 MOVE 0 TO FLGS.
027500
027600* To indicate that the message text is a file, we set the *
027700* CMC_MSG_TEXT_NOTE_AS_FILE flag in the CMC_message *
027800* structure. *
027900 MOVE 0 TO BIG-NUM.
028000
028100* NOTE: If you wish to set more than one of the flags, just add
028200* them together. If you need to set the CMC_MSG_LAST_ELEMENT
028300* flag, MOVE it to something like BIG-NUM first, add the
028400* others, and move the second half of BIG-NUM into your
028500* FLGS. I do this because COBOL may come up with funny
028600* results moving what is actually a 10-digit number into
028700* a field that specifies 9 (but will actually hold some of
028800* the low 10's)...
028900
029000* Set the CMC_MSG_TEXT_NOTE_AS_FILE flag *
029100 ADD CMC-MSG-TEXT-NOTE-AS-FILE TO BIG-NUM.
029200 MOVE LIL-NUM TO MESSAGE-FLAGS (1).
029300
029400* MESSAGE-REFERENCE, MESSAGE-TYPE are ignored. *
029500
029600* TEXT-NOTE is NULL in this case because the text is in a file. *
029700 MOVE 0 TO TEXT-NOTE (1).
029800
029900* SUBJECT is a string terminated by \0. *
030000 STRING "Re: Geoff's behavior..." NULL-TERMINATOR DELIMITED
030100 BY SIZE INTO M-SUB.
030200 CALL INTRINSIC ".LOC." USING M-SUB GIVING SUBJECT (1).
030300
030400* NOTE: The CMC routines were meant to be called from C, or some
030500* other pointer-intensive language. We must simulate this in
030600* COBOL, as in the above example...
030700
030800* Load attachments with attachment structures. *
030900 CALL INTRINSIC ".LOC." USING ATTCH GIVING ATTACHMENTS (1).
031000
031100* attach_title isn't used yet... *
031200* Actually, you can go ahead and put one in, but currently, the

Page: 100 Common Messaging Call API

031300* NETMAIL engine won't use it...
031400* If you do use TITLE, be sure to put POINTERS in these fields...
031500 MOVE 0 TO ATTACH-TITLE (1).
031600 MOVE 0 TO ATTACH-TITLE (2).
031700
031800* attach_type isn't used yet... *
031900* You can put one in, either CMC-ATT-OID-BINARY or -TEXT, but
032000* it will have no affect...
032100* If you do use TYPE, once again, these are POINTERS...
032200 MOVE 0 TO ATTACH-TYPE (1).
032300 MOVE 0 TO ATTACH-TYPE (2).
032400
032500* Set the ATT_LAST_ELEMENT flag in the second entry... *
032600 MOVE 0 TO ATTACH-FLAGS (1).
032700 MOVE CMC-ATT-LAST-ELEMENT TO ATTACH-FLAGS (2).
032800
032900* attach_filename is a string terminated by a \0... *
033000 STRING "FILE.GRP.ACCT01" NULL-TERMINATOR DELIMITED BY SIZE
033100 INTO A-FILE.
033200 CALL INTRINSIC ".LOC." USING A-FILE
033300 GIVING ATTACH-FILENAME (1).
033400 STRING "FILE.GRP.ACCT02" NULL-TERMINATOR
033500 DELIMITED BY SIZE INTO B-FILE.
033600 CALL INTRINSIC ".LOC." USING B-FILE
033700 GIVING ATTACH-FILENAME (2).
033800
033900* Load recipients with the address of our recipient array... *
034000 CALL INTRINSIC ".LOC." USING RECPT GIVING RECIPIENTS (1).
034100
034200* name and address must be strings terminated with a \0... *
034300 STRING "JOHN Q. PUBLIC" NULL-TERMINATOR DELIMITED BY SIZE
034400 INTO U-NAME (1).
034500 STRING "ME@HERE.COM" NULL-TERMINATOR DELIMITED BY SIZE
034600 INTO U-ADDR (1).
034700
034800 CALL INTRINSIC ".LOC." USING U-NAME (1) GIVING RNAME (1).
034900 MOVE CMC-TYPE-INDIVIDUAL TO NAME-TYPE (1).
035000 CALL INTRINSIC ".LOC." USING U-ADDR (1) GIVING RADDRESS (1).
035100
035200* This one (entry 0) goes on the "TO:" list... *
035300 MOVE CMC-ROLE-TO TO ROLE (1).
035400
035500* The recip_flags available are CMC_RECIP_IGNORE, *
035600* CMC_RECIP_LIST_TRUNCATED, and CMC_RECIP_LAST_ELEMENT. *
035700* We don't need any of these for this recipient... *
035800 MOVE 0 TO RECIP-FLAGS (1).
035900
036000* Same stuff for entry 1... *
036100 STRING "JOHN DOE" NULL-TERMINATOR DELIMITED BY SIZE
036200 INTO U-NAME (2).
036300 STRING "YOU@THERE.COM" NULL-TERMINATOR DELIMITED BY SIZE
036400 INTO U-ADDR (2).
036500 CALL INTRINSIC ".LOC." USING U-NAME (2) GIVING RNAME (2).
036600 CALL INTRINSIC ".LOC." USING U-ADDR (2) GIVING RADDRESS (2).

Common Messaging Call API Page: 101

036700 MOVE CMC-TYPE-INDIVIDUAL TO NAME-TYPE (2).
036800
036900* This one (entry 1) goes on the "CC:" list... *
037000 MOVE CMC-ROLE-CC TO ROLE (2).
037100 MOVE 0 TO RECIP-FLAGS (2).
037200
037300* Entry 2, same story (almost)... *
037400 STRING "CAPTAIN KLUTZ" NULL-TERMINATOR DELIMITED BY SIZE
037500 INTO U-NAME (3).
037600 STRING "BOSS@HERE.COM" NULL-TERMINATOR DELIMITED BY SIZE
037700 INTO U-ADDR (3).
037800 CALL INTRINSIC ".LOC." USING U-NAME (3) GIVING RNAME (3).
037900 CALL INTRINSIC ".LOC." USING U-ADDR (3) GIVING RADDRESS (3).
038000 MOVE CMC-TYPE-INDIVIDUAL TO NAME-TYPE (3).
038100
038200* Entry 2 is goes on the "BCC:" list... *
038300 MOVE CMC-ROLE-BCC TO ROLE (3).
038400* Last recipient, set the flag... *
038500 MOVE CMC-RECIP-LAST-ELEMENT TO RECIP-FLAGS (3).
038600
038700* 2nd message...
038800
038900* NO ATTACHMENTS used in this message...
039000 MOVE 0 TO ATTACHMENTS (2).
039100
039200* Notice that this time around, CMC_MSG_TEXT_NOTE_AS_FILE is *
039300* *NOT* set, but I am setting CMC-MSG-LAST-ELEMENT... *
039400 MOVE CMC-MSG-LAST-ELEMENT TO MESSAGE-FLAGS (2).
039500 CALL INTRINSIC ".LOC." USING M-SUB GIVING SUBJECT (2).
039600
039700* Load the message into text_note, terminated by a \0... *
039800 STRING "NOTHING IN PARTICULAR" CARR-RET NEWLINE
039900 NULL-TERMINATOR DELIMITED BY SIZE INTO N-TEXT.
040000 CALL INTRINSIC ".LOC." USING N-TEXT GIVING TEXT-NOTE (2).
040100
040200* Load recipients with the address of our recipient array... *
040300 CALL INTRINSIC ".LOC." USING RECPT-2 GIVING RECIPIENTS (2).
040400
040500 STRING "CAPTAIN KLUTZ" NULL-TERMINATOR DELIMITED BY SIZE
040600 INTO U2-NAME.
040700 STRING "YOU@THERE.COM" NULL-TERMINATOR DELIMITED BY SIZE
040800 INTO U2-ADDR.
040900 CALL INTRINSIC ".LOC." USING U2-NAME GIVING R2NAME.
041000 CALL INTRINSIC ".LOC." USING U2-ADDR GIVING R2ADDRESS.
041100 MOVE CMC-TYPE-INDIVIDUAL TO R2NAME-TYPE.
041200
041300 MOVE CMC-ROLE-TO TO R2ROLE.
041400 MOVE CMC-RECIP-LAST-ELEMENT TO R2RECIP-FLAGS.
041500
041600 CALL "CMC_SEND" USING \SID\, MSG, \FLGS\, \UI-ID\,
041700 \EXTENSIONS\
041800 GIVING RC.
041900
042000* I am just printing the return, you will probably want to stop *

Page: 102 Common Messaging Call API

042100* if you don't get a 0 return... *
042200 DISPLAY "SEND(1) = " RC.
042300
042400 1999-EXIT.
042500 EXIT.
042600
042700 2000-CMCSENDDOC.
042800
042900* SET UP ADDRESSES
043000 STRING "YOU@THERE.COM" SDS-DELIMITER "ME@HERE.COM"
043100 SDS-DELIMITER
043200 "BCC:BOSS@HERE.COM" NULL-TERMINATOR DELIMITED BY SIZE
043300 INTO SDS-ADDRESSES.
043400
043500* SET UP TEXT
043600 STRING "Thou art lucky. I have sent thee a document."
043700 NULL-TERMINATOR DELIMITED BY SIZE
043800 INTO SDS-TEXT.
043900* If you have no text, use the next line in place of the above,
044000* and replace SDS-TEXT with \SD-TEXT\ on the CALL statement...
044100* MOVE 0 TO SD-TEXT.
044200
044300* SET UP SUBJECT
044400 STRING "ALMOST FREE UNLIMITED TIME OFFER!" NULL-TERMINATOR
044500 DELIMITED BY SIZE INTO SDS-SUBJECT.
044600* If you have no subject, use the next line in place of the above,
044700* and replace SDS-SUBJECT with \SD-SUBJECT\ on the CALL statement...
044800* MOVE 0 TO SD-SUBJECT.
044900
045000* SET UP TITLES
045100 STRING "Some Text" SDS-DELIMITER "A Program" NULL-TERMINATOR
045200 DELIMITED BY SIZE INTO SDS-TITLES.
045300* If you have no titles, use the next line in place of the above,
045400* and replace SDS-TITLES with \SD-TITLES\ on the CALL statement...
045500* MOVE 0 TO SD-TITLES.
045600
045700* SET UP FILES
045800 STRING "FILE.GRP.ACCT01" SDS-DELIMITER "FILE.GRP.ACCT02"
045900 NULL-TERMINATOR DELIMITED BY SIZE INTO SDS-FILES.
046000* If you have no files, use the next line in place of the above,
046100* and replace SDS-FILES with \SD-FILES\ on the CALL statement...
046200* MOVE 0 TO SD-FILES.
046300
046400* NOTE: SDS-DELIMITER and SDS-ADDRESS are always required, so they
046500* can be passed straight. SDS-TEXT, SDS-FILES, and SDS-TITLES
046600* may be null, and since this is NOT an OPTION VARIABLE
046700* procedure, the address of 0 must be passed. It is put in a
046800* variable to make sure there is not confusion: a 32-bit 0
046900* address is passed. SD-UI-ID and SD-FLAGS are passed by
047000* value. If you plan to use SDS-TEXT, SDS-FILES and/or
047100* SDS-TITLES, you may pass them directly.
047200
047300* LEAVE FLAGS AT 0 THIS TIME.
047400

Common Messaging Call API Page: 103

047500* CALL...
047600 CALL "CMC_SEND_DOCUMENTS" USING SDS-ADDRESSES, SDS-SUBJECT,
047700 SDS-TEXT, \SD-FLAGS\, SDS-FILES,
047800 SDS-TITLES, SDS-DELIMITER,
047900 \SD-UI-ID\
048000 GIVING RC.
048100
048200 DISPLAY "SEND_DOC = " RC.
048300
048400 2999-EXIT.
048500 EXIT.
048600
048700 3000-CMCLOGOFF.
048800* CMCLOGOFF *
048900* Set FLGS to 0 because we don't support any UIs... *
049000 MOVE 0 TO FLGS.
049100
049200 CALL "CMC_LOGOFF" USING \SID\, \UI-ID\, \FLGS\,
049300 \EXTENSIONS\
049400 GIVING RC.
049500
049600* I am just printing the return, you will probably want to stop *
049700* if you don't get a 0 return... *
049800 DISPLAY "LOGOFF = " RC.
049900
050000 3999-EXIT.
050100 EXIT.
050200
050300 4000-PRINT-CONFIG.
050400
050500* NOTE: Some items returned by cmc_query_configuration are malloc'ed
050600* pointers, which COBOL cannot read directly. Therefore, a new
050700* routine, cmc_cobol_cell_read, is used to move data from these
050800* pointers into static WORKING-STORAGE areas.
050900
051000* We will use TEMP-ID and its current value, because we aren't
051100* actually logging on...
051200
051300* First, what character sets are available?
051400
051500 MOVE CMC-CONFIG-CHARACTER-SET TO CMC-ITEM.
051800 CALL "CMC_QUERY_CONFIGURATION" USING \TEMP-ID\, \CMC-ITEM\,
051900 CMC-CELLPTR,
052000 \EXTENSIONS\
052100 GIVING RC.
052200 IF RC = 0
052300 CALL "CMC_COBOL_CELL_READ" USING \CMC-CELLPTR\, CELL-ADDR,
052400 4, 1
052500 PERFORM VARYING II FROM 1 BY 1 UNTIL CELL-ADDR = 0
052600 CALL "CMC_COBOL_CELL_READ" USING \CELL-ADDR\,
052700 CELL-CONTENTS,
052800 60, 0
052900 DISPLAY "Char set: " CELL-CONTENTS
053000 CALL "CMC_FREE" USING \CELL-ADDR\

Page: 104 Common Messaging Call API

053100 COMPUTE CMC-CELL = CMC-CELLPTR + (II * 4)
053200 CALL "CMC_COBOL_CELL_READ" USING \CMC-CELL\,
053300 CELL-ADDR, 4, 1
053400 END-PERFORM
053500 CALL "CMC_FREE" USING \CMC-CELLPTR\
053600 ELSE
053700 DISPLAY "Char set: ???".
053800
053900* Next, what do we use as a line terminator?
054000
054100 MOVE CMC-CONFIG-LINE-TERM TO CMC-ITEM.
054400 CALL "CMC_QUERY_CONFIGURATION" USING \TEMP-ID\, \CMC-ITEM\,
054500 CMC-ENUMVAL,
054600 \EXTENSIONS\
054700 GIVING RC.
054800 DISPLAY "Line terminator: " WITH NO ADVANCING.
054900 IF RC = 0
055000 EVALUATE CMC-ENUMVAL
055100 WHEN CMC-LINE-TERM-CRLF
055200 DISPLAY "CR/LF"
055300 WHEN CMC-LINE-TERM-LF
055400 DISPLAY "LF"
055500 WHEN CMC-LINE-TERM-CR
055600 DISPLAY "CR"
055700 WHEN OTHER
055800 DISPLAY "BOGUS RETURN!"
055900 END-EVALUATE
056000 ELSE
056100 DISPLAY "???".
056200
056300* Next, what default service?
056400
056500 MOVE CMC-CONFIG-DEFAULT-SERVICE TO CMC-ITEM.
056800 CALL "CMC_QUERY_CONFIGURATION" USING \TEMP-ID\, \CMC-ITEM\,
056900 CMC-CELL,
057000 \EXTENSIONS\
057100 GIVING RC.
057200 IF RC = 0
057300 CALL "CMC_COBOL_CELL_READ" USING \CMC-CELL\,
057400 CELL-CONTENTS,
057500 60, 0
057600 DISPLAY "Default service: " CELL-CONTENTS
057700 CALL "CMC_FREE" USING \CMC-CELL\
057800 ELSE
057900 DISPLAY "Default service: ???".
058000
058100* Next, what default user?
058200
058300 MOVE CMC-CONFIG-DEFAULT-USER TO CMC-ITEM.
058600 CALL "CMC_QUERY_CONFIGURATION" USING \TEMP-ID\, \CMC-ITEM\,
058700 CMC-CELL,
058800 \EXTENSIONS\
058900 GIVING RC.
059000 IF RC = 0

Common Messaging Call API Page: 105

059100 CALL "CMC_COBOL_CELL_READ" USING \CMC-CELL\,
059200 CELL-CONTENTS,
059300 60, 0
059400 DISPLAY "Default user: " CELL-CONTENTS
059500 CALL "CMC_FREE" USING \CMC-CELL\
059600 ELSE
059700 DISPLAY "Default service: ???".
059800
059810* Next, is a password required?
059820
059830 MOVE CMC-CONFIG-REQ-PASSWORD TO CMC-ITEM.
059860 CALL "CMC_QUERY_CONFIGURATION" USING \TEMP-ID\, \CMC-ITEM\,
059870 CMC-ENUMVAL,
059880 \EXTENSIONS\
059890 GIVING RC.
059891 DISPLAY "Password: " WITH NO ADVANCING.
059892 IF RC = 0
059893 EVALUATE CMC-ENUMVAL
059894 WHEN CMC-REQUIRED-NO
059895 DISPLAY "Not required"
059896 WHEN CMC-REQUIRED-YES
059897 DISPLAY "Required"
059898 WHEN CMC-REQUIRED-OPT
059899 DISPLAY "Optional"
059950 WHEN OTHER
059960 DISPLAY "BOGUS RETURN!"
059970 END-EVALUATE
059980 ELSE
059990 DISPLAY "???".
062200
062300* Next, is a service name required?
062310
062410 MOVE CMC-CONFIG-REQ-SERVICE TO CMC-ITEM.
062440 CALL "CMC_QUERY_CONFIGURATION" USING \TEMP-ID\, \CMC-ITEM\,
062450 CMC-ENUMVAL,
062460 \EXTENSIONS\
062470 GIVING RC.
062480 DISPLAY "Service name: " WITH NO ADVANCING.
062490 IF RC = 0
062491 EVALUATE CMC-ENUMVAL
062492 WHEN CMC-REQUIRED-NO
062493 DISPLAY "Not required"
062494 WHEN CMC-REQUIRED-YES
062495 DISPLAY "Required"
062496 WHEN CMC-REQUIRED-OPT
062497 DISPLAY "Optional"
062498 WHEN OTHER
062499 DISPLAY "BOGUS RETURN!"
062570 END-EVALUATE
062580 ELSE
062590 DISPLAY "???".
064600
064710* Next, is a user name required?
064720

Page: 106 Common Messaging Call API

064730 MOVE CMC-CONFIG-REQ-USER TO CMC-ITEM.
064760 CALL "CMC_QUERY_CONFIGURATION" USING \TEMP-ID\, \CMC-ITEM\,
064770 CMC-ENUMVAL,
064780 \EXTENSIONS\
064790 GIVING RC.
064791 DISPLAY "User: " WITH NO ADVANCING.
064792 IF RC = 0
064793 EVALUATE CMC-ENUMVAL
064794 WHEN CMC-REQUIRED-NO
064795 DISPLAY "Not required"
064796 WHEN CMC-REQUIRED-YES
064797 DISPLAY "Required"
064798 WHEN CMC-REQUIRED-OPT
064799 DISPLAY "Optional"
064840 WHEN OTHER
064850 DISPLAY "BOGUS RETURN!"
064860 END-EVALUATE
064870 ELSE
064880 DISPLAY "???".
064890
064900* Next, do we support any user interfaces?
065000
065100 MOVE CMC-CONFIG-UI-AVAIL TO CMC-ITEM.
065200 CALL "CMC_QUERY_CONFIGURATION" USING \TEMP-ID\, \CMC-ITEM\,
065300 CMC-BOOLEAN,
065400 \EXTENSIONS\
065500 GIVING RC.
065600 IF RC = 0
065700 IF CMC-BOOLEAN = CMC-TRUE
065800 DISPLAY "UI: Available"
065900 ELSE
066000 DISPLAY "UI: Not Available"
066100 ELSE
066200 DISPLAY "UI: ???".
068100
068210* Next, is DO_NOT_MARK_AS_READ supported?
068220
068230 MOVE CMC-CONFIG-SUP-NOMKMSGREAD TO CMC-ITEM.
068240 CALL "CMC_QUERY_CONFIGURATION" USING \TEMP-ID\, \CMC-ITEM\,
068250 CMC-BOOLEAN,
068260 \EXTENSIONS\
068270 GIVING RC.
068280 IF RC = 0
068290 IF CMC-BOOLEAN = CMC-TRUE
068291 DISPLAY "DO_NOT_MARK_AS_READ supported: Yes"
068292 ELSE
068293 DISPLAY "DO_NOT_MARK_AS_READ supported: No"
068294 ELSE
068295 DISPLAY "DO_NOT_MARK_AS_READ supported: ???".
069200
069310* Next, is DO_NOT_MARK_AS_READ supported?
069320
069330 MOVE CMC-CONFIG-SUP-COUNTED-STR TO CMC-ITEM.
069340 CALL "CMC_QUERY_CONFIGURATION" USING \TEMP-ID\, \CMC-ITEM\,

Common Messaging Call API Page: 107

069350 CMC-BOOLEAN,
069360 \EXTENSIONS\
069370 GIVING RC.
069380 IF RC = 0
069390 IF CMC-BOOLEAN = CMC-TRUE
069391 DISPLAY "Counted string: Supported"
069392 ELSE
069393 DISPLAY "Counted string: Not supported"
069394 ELSE
069395 DISPLAY "Counted string: ???".
070300
070310* Next, which version is this implementation?
070320
070330 MOVE CMC-CONFIG-VER-IMPLEM TO CMC-ITEM.
070340 CALL "CMC_QUERY_CONFIGURATION" USING \TEMP-ID\, \CMC-ITEM\,
070350 CMC-UINT,
070360 \EXTENSIONS\
070370 GIVING RC.
070380 IF RC = 0
070390 DISPLAY "Version (implementation): " CMC-UINT
070430 ELSE
070431 DISPLAY "Version (implementation): ???".
071100
071110* Finally, which version is our specification?
071111
071120 MOVE CMC-CONFIG-VER-SPEC TO CMC-ITEM.
071130 CALL "CMC_QUERY_CONFIGURATION" USING \TEMP-ID\, \CMC-ITEM\,
071140 CMC-UINT,
071150 \EXTENSIONS\
071160 GIVING RC.
071170 IF RC = 0
071180 DISPLAY "Version (specs): " CMC-UINT
071190 ELSE
071200 DISPLAY "Version (specs): ???".
071300
071900 4999-EXIT.
072000 EXIT.

Page: 108 Common Messaging Call API

The sample program in C (CMCCEX) that uses various CMC calls:

�LQFOXGH �VWGLR�K!

�LQFOXGH �VWGOLE�K!

�LQFOXGH �VWULQJ�K!

�LQFOXGH �PDOORF�K!

�LQFOXGH �[FPF�K�

�

�

�
 352727<3(6
�

�

�

YRLG FPFORJRQ�YRLG��

YRLG FPFVHQG�YRLG��

YRLG FPFORJRII�YRLG��

YRLG FPFVHQGGRFV�YRLG��

YRLG FPFSULQWFRQILJ�YRLG��

�

�

�
),(/'6 86(' %< &0& &$//6
�

�

�

&0&BUHWXUQBFRGH UF�

&0&BVHVVLRQBLG VHVVLG�

&0&BPHVVDJH PVJ>�@�

&0&BIODJV IOJV� IODJV�

&0&BXLBLG XLBLG�

FKDU XVHU>��@� SDVV>�@�

&0&BXLQW�� YHUV�

&0&BH[WHQVLRQ
H[WHQVLRQV�

&0&BREMHFWBLGHQWLILHU FKDUVHW�

&0&BVWULQJ VHUYLFH�

�

�

�
),(/'6)25 &0&B6(1'B'2&80(176
�

�

�

FKDU DGGUHVVHV>���@� WH[W>���@� VXEMHFW>��@� WLWOHV>���@�

ILOHV>���@� GHOLPLWHU>�@�

LQW PDLQ�LQW QXPS� FKDU

SDUP]�

^

FPFSULQWFRQILJ���

LI�QXPS � � __ VWUFPS�SDUP]>�@� �6(1'�� ��

^

FPFORJRQ���

FPFVHQG���

FPFORJRII���

`

HOVH

FPFVHQGGRFV���

`

Common Messaging Call API Page: 109

YRLG FPFORJRQ�YRLG�

^

�

�

�
 7KLV ZRQ
W EH QHHGHG ZLWK FPFBVHQGBGRFXPHQWV� EXW LW LV
�

�
 QHHGHG ZLWK FPFBVHQG�
�

�

�

�
 8,�,' LV QRW XVHG DQ\ZD\� VHW WR �
�

XLBLG ��

�
 86(5 PXVW EH �� RU OHVV FKDUDFWHUV� WHUPLQDWHG ZLWK D ?�
�

VWUFS\�XVHU� �0<B86(5���

�
 127(� ,I \RX ZLVK WR SDVV D 18// XVHU� DQ\ 18// FKDUDFWHU
�

�
 SRLQWHU ZLOO ZRUN MXVW ILQH���
�

�
 3$66 PXVW EH � FKDUDFWHUV� WHUPLQDWHG ZLWK D ?�
�

VWUFS\�SDVV� �3D6V:R5G���

�
 127(� ,I \RX ZLVK WR SDVV D 18// XVHU� DQ\ 18// FKDUDFWHU
�

�
 SRLQWHU ZLOO ZRUN MXVW ILQH KHUH� WRR���
�

�
 6(59,&(� &+5&7(5 6(7� $1' (;7(16,216 $5(127 86('� 3$66 18//6�
�

VHUYLFH 18//�

H[WHQVLRQV 18//�

FKDUVHW 18//�

�
 3URJUDPPHG WR VSHFLILFDWLRQ ����
�

YHUV ����

�
 3DVV D � LQ)/*6 EHFDXVH ZH GRQ
W VXSSRUW /2*21B8,� (5525B8,�
�

�
 RU &2817('B675,1*B7<3(�
�

IOJV ��

�
 VHVVLG LV WKH VHVVLRQ ,' WKDW PXVW EH XVHG LQ DOO WKH RWKHU FDOOV�
�

UF FPFBORJRQ�VHUYLFH� XVHU� SDVV� FKDUVHW� XLBLG� YHUV� IOJV�

	VHVVLG�

H[WHQVLRQV��

�
 , DP MXVW SULQWLQJ WKH UHWXUQ� \RX ZLOO SUREDEO\ ZDQW WR VWRS
�

�
 LI \RX GRQ
W JHW D � UHWXUQ���
�

SULQWI��/2*21 �G?Q�� UF��

`

YRLG FPFVHQG�YRLG�

^

�

�

�
 7KHUH DUH WZR ZD\V RI VHQGLQJ D WH[W ILOH�)LUVW� WKHUH LV WKH
�

�
 VHQGLQJ DV D ILOH PHWKRG� +HUH LV KRZ WR GR WKLV PHWKRG�
�

�

�

�
)/*6 LV � EHFDXVH ZH GRQ
W VXSSRUW &2817('B675,1*B7<3(RU DQ\
�

�
 RI WKH 8,V���
�

IOJV ��

�
 7R LQGLFDWH WKDW WKH PHVVDJH WH[W LV D ILOH� ZH VHW WKH
�

Page: 110 Common Messaging Call API

�
 &0&B06*B7(;7B127(B$6B),/(IODJ LQ WKH &0&BPHVVDJH
�

�
 VWUXFWXUH�
�

�
 6HW WKH &0&B06*B7(;7B127(B$6B),/(IODJ
�

PVJ>�@�PHVVDJHBIODJV � _ &0&B06*B7(;7B127(B$6B),/(�

�
 0(66$*(�5()(5(1&(� 0(66$*(�7<3(DUH LJQRUHG�
�

�
 <RX PD\ VSHFLI\ WKHP LI \RX ZLVK���
�

PVJ>�@�PHVVDJHBUHIHUHQFH 18//�

PVJ>�@�PHVVDJHBH[WHQVLRQV 18//�

PVJ>�@�PHVVDJHBW\SH �&0&BVWULQJ�PDOORF����

VWUFS\�PVJ>�@�PHVVDJHBW\SH� �&0&� ,30���

�
 127(�)RU WKH SXUSRVH RI VHQGLQJ D QHZ PHVVDJH� 0(66$*(�5()(5(1&(
�

�
 KDV QR XVH ZKDWVRHYHU� $OVR� ZH FXUUHQWO\ GRQ
W ERWKHU WR
�

�
 FKHFN WKH 0(66$*(�7<3(ILHOG� DOWKRXJK LW PD\ EH XVHIXO LQ
�

�
 WKH IXWXUH���
�

�
 7(;7�127(LV 18// LQ WKLV FDVH EHFDXVH WKH WH[W LV LQ D ILOH�
�

PVJ>�@�WH[WBQRWH 18//�

�
 7,0(�6(17 LVQ
W XVHG� EXW VHW LW WR � DQ\ZD\���
�

PVJ>�@�WLPHBVHQW�VHFRQG ��

PVJ>�@�WLPHBVHQW�PLQXWH ��

PVJ>�@�WLPHBVHQW�KRXU ��

PVJ>�@�WLPHBVHQW�GD\ ��

PVJ>�@�WLPHBVHQW�PRQWK ��

PVJ>�@�WLPHBVHQW�\HDU ��

PVJ>�@�WLPHBVHQW�LVGVW ��

PVJ>�@�WLPHBVHQW�WP]RQH ��

�
 68%-(&7 LV D VWULQJ WHUPLQDWHG E\ ?��
�

PVJ>�@�VXEMHFW �&0&BVWULQJ�PDOORF�����

VWUFS\�PVJ>�@�VXEMHFW� �5H� *HRII
V EHKDYLRXU������

�
 6HW XS DWWDFKPHQW VWUXFWXUH���
�

PVJ>�@�DWWDFKPHQWV

�&0&BDWWDFKPHQW
�PDOORF�VL]HRI�&0&BDWWDFKPHQW�
���

�
 DWWDFKBWLWOH LVQ
W XVHG \HW���
�

�
 $FWXDOO\� \RX FDQ JR DKHDG DQG SXW RQH LQ� EXW FXUUHQWO\� WKH
�

�
 1(70$,/ HQJLQH ZRQ
W XVH LW���
�

PVJ>�@�DWWDFKPHQWV>�@�DWWDFKBWLWOH �&0&BVWULQJ�PDOORF�����

VWUFS\�PVJ>�@�DWWDFKPHQWV>�@�DWWDFKBWLWOH� �6RPH 7H[W������

PVJ>�@�DWWDFKPHQWV>�@�DWWDFKBWLWOH �&0&BVWULQJ�PDOORF�����

VWUFS\�PVJ>�@�DWWDFKPHQWV>�@�DWWDFKBWLWOH� �%LQDU\ 'DWD������

�
 DWWDFKBW\SH LVQ
W XVHG \HW���
�

�
 <RX FDQ SXW RQH LQ� HLWKHU &0&�$77�2,'�%,1$5< RU �7(;7� EXW
�

�
 LW ZLOO KDYH QR DIIHFW���
�

PVJ>�@�DWWDFKPHQWV>�@�DWWDFKBW\SH

�&0&BREMHFWBLGHQWLILHU�PDOORF�����

VWUFS\�PVJ>�@�DWWDFKPHQWV>�@�DWWDFKBW\SH� &0&B$77B2,'B7(;7��

PVJ>�@�DWWDFKPHQWV>�@�DWWDFKBW\SH

�&0&BREMHFWBLGHQWLILHU�PDOORF�����

Common Messaging Call API Page: 111

VWUFS\�PVJ>�@�DWWDFKPHQWV>�@�DWWDFKBW\SH� &0&B$77B2,'B%,1$5<��

�
 6HW WKH $77B/$67B(/(0(17 IODJ LQ WKH VHFRQG HQWU\���
�

PVJ>�@�DWWDFKPHQWV>�@�DWWDFKBIODJV ��

PVJ>�@�DWWDFKPHQWV>�@�DWWDFKBIODJV � _ &0&B$77B/$67B(/(0(17�

�
 DWWDFKBILOHQDPH LV D VWULQJ WHUPLQDWHG E\ D ?����
�

PVJ>�@�DWWDFKPHQWV>�@�DWWDFKBILOHQDPH �&0&BVWULQJ�PDOORF�����

VWUFS\�PVJ>�@�DWWDFKPHQWV>�@�DWWDFKBILOHQDPH� �),/(�*53�$&&7�����

PVJ>�@�DWWDFKPHQWV>�@�DWWDFKBILOHQDPH �&0&BVWULQJ�PDOORF�����

VWUFS\�PVJ>�@�DWWDFKPHQWV>�@�DWWDFKBILOHQDPH� �),/(�*53�$&&7�����

�
 :H GRQ
W XVH DWWDFKPHQW H[WHQVLRQV���
�

PVJ>�@�DWWDFKPHQWV>�@�DWWDFKBH[WHQVLRQV 18//�

PVJ>�@�DWWDFKPHQWV>�@�DWWDFKBH[WHQVLRQV 18//�

�
 /RDG UHFLSLHQWV ZLWK WKH DGGUHVV RI RXU UHFLSLHQW DUUD\���
�

PVJ>�@�UHFLSLHQWV

�&0&BUHFLSLHQW
�PDOORF�VL]HRI�&0&BUHFLSLHQW�
���

�
 QDPH DQG DGGUHVV PXVW EH VWULQJV WHUPLQDWHG ZLWK D ?����
�

PVJ>�@�UHFLSLHQWV>�@�QDPH �&0&BVWULQJ�PDOORF�����

VWUFS\�PVJ>�@�UHFLSLHQWV>�@�QDPH� �-2+1 4� 38%/,&���

PVJ>�@�UHFLSLHQWV>�@�DGGUHVV �&0&BVWULQJ�PDOORF�����

VWUFS\�PVJ>�@�UHFLSLHQWV>�@�DGGUHVV� �<28#7+(5(�&20���

PVJ>�@�UHFLSLHQWV>�@�QDPHBW\SH &0&B7<3(B,1',9,'8$/�

�
 7KLV RQH �HQWU\ �� JRHV RQ WKH �72�� OLVW���
�

PVJ>�@�UHFLSLHQWV>�@�UROH &0&B52/(B72�

�
 7KH UHFLSBIODJV DYDLODEOH DUH &0&B5(&,3B,*125(�
�

�
 &0&B5(&,3B/,67B7581&$7('� DQG &0&B5(&,3B/$67B(/(0(17�
�

�
 :H GRQ
W QHHG DQ\ RI WKHVH IRU WKLV UHFLSLHQW���
�

PVJ>�@�UHFLSLHQWV>�@�UHFLSBIODJV ��

PVJ>�@�UHFLSLHQWV>�@�UHFLSBH[WHQVLRQV 18//�

�
 6DPH VWXII IRU HQWU\ ����
�

PVJ>�@�UHFLSLHQWV>�@�QDPH �&0&BVWULQJ�PDOORF�����

VWUFS\�PVJ>�@�UHFLSLHQWV>�@�QDPH� �-2+1 '2(���

PVJ>�@�UHFLSLHQWV>�@�DGGUHVV �&0&BVWULQJ�PDOORF�����

VWUFS\�PVJ>�@�UHFLSLHQWV>�@�DGGUHVV� �0(#+(5(�&20���

PVJ>�@�UHFLSLHQWV>�@�QDPHBW\SH &0&B7<3(B,1',9,'8$/�

�
 7KLV RQH �HQWU\ �� JRHV RQ WKH �&&�� OLVW���
�

PVJ>�@�UHFLSLHQWV>�@�UROH &0&B52/(B&&�

PVJ>�@�UHFLSLHQWV>�@�UHFLSBIODJV ��

PVJ>�@�UHFLSLHQWV>�@�UHFLSBH[WHQVLRQV 18//�

�
 (QWU\ �� VDPH VWRU\ �DOPRVW����
�

PVJ>�@�UHFLSLHQWV>�@�QDPH �&0&BVWULQJ�PDOORF�����

VWUFS\�PVJ>�@�UHFLSLHQWV>�@�QDPH� �&37,1 ./87=���

PVJ>�@�UHFLSLHQWV>�@�DGGUHVV �&0&BVWULQJ�PDOORF�����

VWUFS\�PVJ>�@�UHFLSLHQWV>�@�DGGUHVV� �%266#+(5(�&20���

PVJ>�@�UHFLSLHQWV>�@�QDPHBW\SH &0&B7<3(B,1',9,'8$/�

Page: 112 Common Messaging Call API

�
 (QWU\ � LV JRHV RQ WKH �%&&�� OLVW���
�

PVJ>�@�UHFLSLHQWV>�@�UROH &0&B52/(B%&&�

PVJ>�@�UHFLSLHQWV>�@�UHFLSBH[WHQVLRQV 18//�

�
 /DVW UHFLSLHQW� VHW WKH IODJ���
�

PVJ>�@�UHFLSLHQWV>�@�UHFLSBIODJV � _ &0&B5(&,3B/$67B(/(0(17�

�
 �QG PHVVDJH���
�

�
 12 77&+0(176 XVHG LQ WKLV PHVVDJH���
�

PVJ>�@�PHVVDJHBUHIHUHQFH 18//�

PVJ>�@�DWWDFKPHQWV 18//�

PVJ>�@�PHVVDJHBH[WHQVLRQV 18//�

PVJ>�@�PHVVDJHBW\SH �&0&BVWULQJ�PDOORF����

VWUFS\�PVJ>�@�PHVVDJHBW\SH� �&0&� ,30���

�
 68%-(&7 LV D VWULQJ WHUPLQDWHG E\ ?��
�

PVJ>�@�VXEMHFW �&0&BVWULQJ�PDOORF�����

VWUFS\�PVJ>�@�VXEMHFW� �5H� *HRII
V DWWLWXGH������

�
 1RWLFH WKDW WKLV WLPH DURXQG� &0&B06*B7(;7B127(B$6B),/(LV
�

�

127
 VHW� EXW , DP VHWWLQJ &0&�06*�/$67�(/(0(17���
�

PVJ>�@�PHVVDJHBIODJV � _ &0&B06*B/$67B(/(0(17�

�
 7,0(�6(17 LVQ
W XVHG� EXW VHW LW WR � DQ\ZD\���
�

PVJ>�@�WLPHBVHQW�VHFRQG ��

PVJ>�@�WLPHBVHQW�PLQXWH ��

PVJ>�@�WLPHBVHQW�KRXU ��

PVJ>�@�WLPHBVHQW�GD\ ��

PVJ>�@�WLPHBVHQW�PRQWK ��

PVJ>�@�WLPHBVHQW�\HDU ��

PVJ>�@�WLPHBVHQW�LVGVW ��

PVJ>�@�WLPHBVHQW�WP]RQH ��

�
 /RDG WKH PHVVDJH LQWR WH[WBQRWH� WHUPLQDWHG E\ D ?����
�

PVJ>�@�WH[WBQRWH �&0&BVWULQJ�PDOORF������

VWUFS\�PVJ>�@�WH[WBQRWH� �127+,1* ,1 3$57,&8/$5?���?Q���

�
 /RDG UHFLSLHQWV ZLWK WKH DGGUHVV RI RXU UHFLSLHQW DUUD\���
�

PVJ>�@�UHFLSLHQWV �&0&BUHFLSLHQW
�PDOORF�VL]HRI�&0&BUHFLSLHQW���

PVJ>�@�UHFLSLHQWV>�@�QDPH �&0&BVWULQJ�PDOORF�����

VWUFS\�PVJ>�@�UHFLSLHQWV>�@�QDPH� �-2+1 4� 38%/,&���

PVJ>�@�UHFLSLHQWV>�@�DGGUHVV �&0&BVWULQJ�PDOORF�����

VWUFS\�PVJ>�@�UHFLSLHQWV>�@�DGGUHVV� �<28#7+(5(�&20���

PVJ>�@�UHFLSLHQWV>�@�QDPHBW\SH &0&B7<3(B,1',9,'8$/�

�
 7KLV RQH �HQWU\ �� JRHV RQ WKH �72�� OLVW���
�

PVJ>�@�UHFLSLHQWV>�@�UROH &0&B52/(B72�

�
 /DVW UHFLSLHQW� VHW WKH IODJ���
�

PVJ>�@�UHFLSLHQWV>�@�UHFLSBIODJV � _ &0&B5(&,3B/$67B(/(0(17�

UF FPFBVHQG�VHVVLG� PVJ� IOJV� XLBLG� H[WHQVLRQV��

Common Messaging Call API Page: 113

�
 , DP MXVW SULQWLQJ WKH UHWXUQ� \RX ZLOO SUREDEO\ ZDQW WR VWRS
�

�
 LI \RX GRQ
W JHW D � UHWXUQ���
�

SULQWI��6(1' �G?Q�� UF��

`

YRLG FPFVHQGGRFV�YRLG�

^

�
 6(7 83 $''5(66(6
�

VWUFS\�DGGUHVVHV� �<28#7+(5(�&20�0(#+(5(�&20�%&&�%266#+(5(�&20���

�
 6(7 83 7(;7
�

VWUFS\�WH[W� �7KRX DUW OXFN� , KDYH VHQW WKH D GRFXPHQW����

�
 127(� ,I \RX KDYH QR WH[W� DQ\ 18// FKDUDFWHU SRLQWHU ZLOO GR���
�

�
 6(7 83 68%-(&7
�

VWUFS\�VXEMHFW� �$/0267)5((81/,0,7(' 7,0(2))(5����

�
 127(� ,I \RX KDYH QR VXEMHFW� DQ\ 18// FKDUDFWHU SRLQWHU ZLOO GR���

�

�
 6(7 83 7,7/(6
�

VWUFS\�WLWOHV� �6RPH 7H[W�$ 3URJUDP���

�
 127(� ,I \RX KDYH QR WLWOHV� DQ\ 18// FKDUDFWHU SRLQWHU ZLOO GR���
�

�
 6(7 83),/(6
�

VWUFS\�ILOHV� �),/(�*53�$&&7���),/(�*53�$&&7�����

�
 127(� ,I \RX KDYH QR WLWOHV� DQ\ 18// FKDUDFWHU SRLQWHU ZLOO GR���
�

�
 '(/,0,7(5 LV D FRPPD�
�

VWUFS\�GHOLPLWHU� �����

�
 /($9()/$*6 $7 � 7+,6 7,0(�
�

IODJV ��

UF FPFBVHQGBGRFXPHQWV�DGGUHVVHV� VXEMHFW� WH[W� IODJV� ILOHV�

WLWOHV� GHOLPLWHU� XLBLG��

SULQWI��6(1'B'2& �G?Q�� UF��

`

YRLG FPFORJRII�YRLG�

^

�
 6HW)/*6 WR � EHFDXVH ZH GRQ
W VXSSRUW DQ\ 8,V���
�

IOJV ��

UF FPFBORJRII�VHVVLG� XLBLG� IOJV� H[WHQVLRQV��

�
 , DP MXVW SULQWLQJ WKH UHWXUQ� \RX ZLOO SUREDEO\ ZDQW WR VWRS
�

�
 LI \RX GRQ
W JHW D � UHWXUQ���
�

SULQWI��/2*2)) �G?Q�� UF��

`

YRLG FPFSULQWFRQILJ�YRLG�

^

LQW LL�

Page: 114 Common Messaging Call API

&0&BVHVVLRQBLG WHPSBLG�

&0&BHQXP ZKDW� HW�

&0&BH[WHQVLRQ
QRQH�

&0&BVWULQJ VWU�

&0&BREMHFWBLGHQWLILHU
RL�

&0&BERROHDQ ERR�

&0&BXLQW�� XLQW�

WHPSBLG �� �
 1RW ORJJHG RQ���
�

QRQH �&0&BH[WHQVLRQ
�18//�

�
 :KDW FKDUDFWHU VHW"
�

ZKDW &0&B&21),*B&+5&7(5B6(7�

UF FPFBTXHU\BFRQILJXUDWLRQ�WHPSBLG� ZKDW� �&0&BEXIIHU�	RL� QRQH��

LI�UF ��

^

IRU�LL �� LL � ��� 		 RL>LL@ � 18//� LL���

^

SULQWI��&KDU VHW� �V?Q�� RL>LL@��

FPFBIUHH�RL>LL@��

`

FPFBIUHH�RL��

`

HOVH

SULQWI��&KDU VHW� """?Q���

�
 :KDW OLQH WHUPLQDWRU"
�

ZKDW &0&B&21),*B/,1(B7(50�

UF FPFBTXHU\BFRQILJXUDWLRQ�WHPSBLG� ZKDW� �&0&BEXIIHU�	HW� QRQH��

SULQWI��/LQH WHUPLQDWRU� ���

LI�UF ��

^

VZLWFK�HW�

^

FDVH &0&B/,1(B7(50B&5/)�

SULQWI��&5�/)?Q���

EUHDN�

FDVH &0&B/,1(B7(50B/)�

SULQWI��/)?Q���

EUHDN�

FDVH &0&B/,1(B7(50B&5�

SULQWI��&5?Q���

EUHDN�

GHIDXOW�

SULQWI��%2*86 5(7851�?Q���

`

`

HOVH

SULQWI��"""?Q���

�
 :KDW GHIDXOW VHUYLFH"
�

ZKDW &0&B&21),*B'()$8/7B6(59,&(�

UF FPFBTXHU\BFRQILJXUDWLRQ�WHPSBLG� ZKDW� �&0&BEXIIHU�	VWU� QRQH��

LI�UF ��

Common Messaging Call API Page: 115

^

SULQWI��'HIDXOW VHUYLFH� �V?Q�� VWU��

FPFBIUHH�	VWU��

`

HOVH

SULQWI��'HIDXOW VHUYLFH� """?Q���

�
 :KDW GHIDXOW XVHU"
�

ZKDW &0&B&21),*B'()$8/7B86(5�

UF FPFBTXHU\BFRQILJXUDWLRQ�WHPSBLG� ZKDW� �&0&BEXIIHU�	VWU� QRQH��

LI�UF ��

^

SULQWI��'HIDXOW XVHU� �V?Q�� VWU��

FPFBIUHH�	VWU��

`

HOVH

SULQWI��'HIDXOW XVHU� """?Q���

�
 3DVVZRUG UHTXLUHG"
�

ZKDW &0&B&21),*B5(4B3$66:25'�

UF FPFBTXHU\BFRQILJXUDWLRQ�WHPSBLG� ZKDW� �&0&BEXIIHU�	HW� QRQH��

SULQWI��3DVVZRUG� ���

LI�UF ��

^

VZLWFK�HW�

^

FDVH &0&B5(48,5('B12�

SULQWI��1RW UHTXLUHG?Q���

EUHDN�

FDVH &0&B5(48,5('B237�

SULQWI��2SWLRQDO?Q���

EUHDN�

FDVH &0&B5(48,5('B<(6�

SULQWI��5HTXLUHG?Q���

EUHDN�

GHIDXOW�

SULQWI��%2*86 5(7851�?Q���

`

`

HOVH

SULQWI��"""?Q���

�
 6HUYLFH QDPH UHTXLUHG"
�

ZKDW &0&B&21),*B5(4B6(59,&(�

UF FPFBTXHU\BFRQILJXUDWLRQ�WHPSBLG� ZKDW� �&0&BEXIIHU�	HW� QRQH��

SULQWI��6HUYLFH QDPH� ���

LI�UF ��

^

VZLWFK�HW�

^

FDVH &0&B5(48,5('B12�

SULQWI��1RW UHTXLUHG?Q���

EUHDN�

FDVH &0&B5(48,5('B237�

Page: 116 Common Messaging Call API

SULQWI��2SWLRQDO?Q���

EUHDN�

FDVH &0&B5(48,5('B<(6�

SULQWI��5HTXLUHG?Q���

EUHDN�

GHIDXOW�

SULQWI��%2*86 5(7851�?Q���

`

`

HOVH

SULQWI��"""?Q���

�
 8VHU UHTXLUHG"
�

ZKDW &0&B&21),*B5(4B86(5�

UF FPFBTXHU\BFRQILJXUDWLRQ�WHPSBLG� ZKDW� �&0&BEXIIHU�	HW� QRQH��

SULQWI��8VHU� ���

LI�UF ��

^

VZLWFK�HW�

^

FDVH &0&B5(48,5('B12�

SULQWI��1RW UHTXLUHG?Q���

EUHDN�

FDVH &0&B5(48,5('B237�

SULQWI��2SWLRQDO?Q���

EUHDN�

FDVH &0&B5(48,5('B<(6�

SULQWI��5HTXLUHG?Q���

EUHDN�

GHIDXOW�

SULQWI��%2*86 5(7851�?Q���

`

`

HOVH

SULQWI��"""?Q���

�
 8, DYDLODEOH"
�

ZKDW &0&B&21),*B8,B9,/�

UF FPFBTXHU\BFRQILJXUDWLRQ�WHPSBLG� ZKDW� �&0&BEXIIHU�	ERR� QRQH��

LI�UF ��

LI�ERR &0&B758(�

SULQWI��8,� $YDLODEOH?Q���

HOVH

SULQWI��8,� 1RW DYDLODEOH?Q���

HOVH

SULQWI��8,� """?Q���

�
 '2B127B0$5.B$6B5($' VXSSRUWHG"
�

ZKDW &0&B&21),*B683B120.06*5($'�

UF FPFBTXHU\BFRQILJXUDWLRQ�WHPSBLG� ZKDW� �&0&BEXIIHU�	ERR� QRQH��

LI�UF ��

LI�ERR &0&B758(�

SULQWI��'2B127B0$5.B$6B5($' VXSSRUWHG� <HV?Q���

HOVH

Common Messaging Call API Page: 117

SULQWI��'2B127B0$5.B$6B5($' VXSSRUWHG� 1R?Q���

HOVH

SULQWI��'2B127B0$5.B$6B5($' VXSSRUWHG� """?Q���

�
 &2817('B675,1* VXSSRUWHG"
�

ZKDW &0&B&21),*B683B&2817('B675�

UF FPFBTXHU\BFRQILJXUDWLRQ�WHPSBLG� ZKDW� �&0&BEXIIHU�	ERR� QRQH��

LI�UF ��

LI�ERR &0&B758(�

SULQWI��&RXQWHG VWULQJ� 6XSSRUWHG?Q���

HOVH

SULQWI��&RXQWHG VWULQJ� 1RW VXSSRUWHG?Q���

HOVH

SULQWI��&RXQWHG VWULQJ� """?Q���

�
 :KLFK YHUVLRQ"
�

ZKDW &0&B&21),*B9(5B,03/(0�

UF FPFBTXHU\BFRQILJXUDWLRQ�WHPSBLG� ZKDW� �&0&BEXIIHU�	XLQW� QRQH��

LI�UF ��

SULQWI��9HUVLRQ �LPSOHPHQWDWLRQ�� �G?Q�� XLQW��

HOVH

SULQWI��9HUVLRQ �LPSOHPHQWDWLRQ�� """?Q���

�
 :KLFK VSHF"
�

ZKDW &0&B&21),*B9(5B63(&�

UF FPFBTXHU\BFRQILJXUDWLRQ�WHPSBLG� ZKDW� �&0&BEXIIHU�	XLQW� QRQH��

LI�UF ��

SULQWI��9HUVLRQ �VSHFV�� �G?Q�� XLQW��

HOVH

SULQWI��9HUVLRQ �VSHFV�� """?Q���

`

Page: 118 Common Messaging Call API

The sample program in SPLash! (native mode SPL) (CMCSPLEX) that uses various CMC calls:

�&21752/ 6(*0(17 &0&
(;$03/(�1$7,9(�6<0/(1 ��

�� :$51,1*� 7KH GHIDXOW 6<0/(1 LV ��� DQG WKDW ZLOO FXW RII !!

�� WKH QDPH RI FPFBVHQGBGRFXPHQWV� !!

%(*,1

�� 6725$*(!!

%<7(55< DGGUHVVHV�������� WH[W�������� VXEMHFW�������

WLWOHV�������� ILOHV�������� GHOLPLWHUV������

EXII��������

9,578$/ %<7(32,17(5 Q
ILOH� Q
WLWOH�

'28%/(IODJV� XL
LG� UF�

,17(*(5 OHQ�

,175,16,& 35,17� '$6&,,�

�� (;7(51$/6 !!

'28%/(352&('85(FPF
VHQG
GRFXPHQWV�DGGU� VXE� W[W� IOJV�

ILOV� WLWOV� GHOV� XL��

9$/8(IOJV�

XL�

%<7(55< DGGU� VXE� W[W�

ILOV� WLWOV� GHOV�

'28%/(IOJV�

XL�

237,21 (;7(51$/�1$7,9(�

�� 0$,1 &2'(!!

PDLQ
FRGH�

�� $GGUHVVHV DUH DVVXPHG WR EH �72��� WKLV H[DPSOH XVHV RQH 72 !!

�� DQG RQH &&� %&& LV DOVR DYDLODEOH� $GGUHVVHV DUH VHSDUDWHG !!

�� E\ FRPPDV� VR $#%�&�%#%�&�&&�&#%�&�%&&�'#%�&�(#%�& ZRXOG !!

�� HQG XS ZLWK $ DQG % RQ WKH 72 OLQH� & RQ WKH && OLQH� ZLWK !!

�� ' DQG (JHWWLQJ EOLQG FDUERQV� %H VXUH WR 18// WHUPLQDWH� !!

029(DGGUHVVHV� ��5&%#�.�&20�&&�7).#�.�&20�� ���

�� ,) <28 +$9(12 7(;7� 3$66 $ 18// 32,17(5 ,167($' !!

029(WH[W� ��, DP VHQGLQJ \RX D GRFXPHQW��� ���

�� 7+(68%-(&7 2) 7+(0(66$*(!!

029(VXEMHFW� ��63$0�2�5$0$��� ���

�� ,) <28 +$9(12 77&+0(176� 3$66 $ 18// 675,1* !!

�� 27+(5:,6(� 6(3$5$7(7+(0 %< &200$6��� !!

WLWOHV� ILOHV� ��

�� 029(WLWOHV� ��)LUVW DWWDFKPHQW�6HFRQG DWWDFKPHQW�� ���

029(ILOHV� ��63$0��86*7).�'(9�.�63$0��86*7).�'(9�.�� ��� !!

�� 0< '(/,0,7(5 ,6 $ &200$!!

029(GHOLPLWHUV� ��������

�� 12 63(&,$/)/$*6� 12 8,' !!

IODJV� �'�

XL
LG� �'�

Common Messaging Call API Page: 119

UF� FPF
VHQG
GRFXPHQWV�DGGUHVVHV� VXEMHFW� WH[W� IODJV� ILOHV�

WLWOHV� GHOLPLWHUV� XL
LG��

�� $/7(51$7,9(:$< 2) 3$66,1* 18//6� $ 18// 32,17(5 !!

�� #Q
ILOH� �'�

#Q
WLWOH� �'�

UF� FPF
VHQG
GRFXPHQWV�DGGUHVVHV� VXEMHFW� WH[W� IODJV� Q
ILOH�

Q
WLWOH� GHOLPLWHUV� XL
LG�� !!

�� 35,17 287 7+(5(68/7 !!

OHQ� 029(EXII� �6(1'B'2& ��

OHQ� OHQ � '$6&,,�UF� ��� EXII�OHQ���

35,17�EXII� �OHQ� ���

(1'�

